Commit 5ba352a3 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Another attempt at a `RelDecision` instance for `flip`.

Now we follow Coq's stdlib and declare this instance using a `Hint Extern`;
this avoids making `flip` type class opaque.
parent 9d7640c0
Pipeline #16589 passed with stage
in 8 minutes and 5 seconds
......@@ -135,7 +135,7 @@ Lemma dexists_proj1 `(P : A → Prop) `{∀ x, Decision (P x)} (x : dsig P) p :
dexist (`x) p = x.
Proof. apply dsig_eq; reflexivity. Qed.
(** * Instances of Decision *)
(** * Instances of [Decision] *)
(** Instances of [Decision] for operators of propositional logic. *)
Instance True_dec: Decision True := left I.
Instance False_dec: Decision False := right (False_rect False).
......@@ -192,3 +192,11 @@ Proof. destruct (decide Q); tauto. Qed.
Program Definition inj_eq_dec `{EqDecision A} {B} (f : B A)
`{!Inj (=) (=) f} : EqDecision B := λ x y, cast_if (decide (f x = f y)).
Solve Obligations with firstorder congruence.
(** * Instances of [RelDecision] *)
Definition flip_dec {A} (R : relation A) `{!RelDecision R} :
RelDecision (flip R) := λ x y, decide_rel R y x.
(** We do not declare this as an actual instance since Coq can unify [flip ?R]
with any relation. Coq's standard library is carrying out the same approach for
the [Reflexive], [Transitive], etc, instance of [flip]. *)
Hint Extern 3 (RelDecision (flip _)) => apply flip_dec : typeclass_instances.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment