Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
5b60a7fb
Commit
5b60a7fb
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Improve organization of prelude/fin_collections.
parent
68bc0233
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/fin_collections.v
+29
-14
29 additions, 14 deletions
theories/fin_collections.v
with
29 additions
and
14 deletions
theories/fin_collections.v
+
29
−
14
View file @
5b60a7fb
...
@@ -17,6 +17,14 @@ Implicit Types X Y : C.
...
@@ -17,6 +17,14 @@ Implicit Types X Y : C.
Lemma
fin_collection_finite
X
:
set_finite
X
.
Lemma
fin_collection_finite
X
:
set_finite
X
.
Proof
.
by
exists
(
elements
X
);
intros
;
rewrite
elem_of_elements
.
Qed
.
Proof
.
by
exists
(
elements
X
);
intros
;
rewrite
elem_of_elements
.
Qed
.
Instance
elem_of_dec_slow
(
x
:
A
)
(
X
:
C
)
:
Decision
(
x
∈
X
)
|
100
.
Proof
.
refine
(
cast_if
(
decide_rel
(
∈
)
x
(
elements
X
)));
by
rewrite
<-
(
elem_of_elements
_)
.
Defined
.
(** * The [elements] operation *)
Global
Instance
elements_proper
:
Proper
((
≡
)
==>
(
≡
ₚ
))
(
elements
(
C
:=
C
))
.
Global
Instance
elements_proper
:
Proper
((
≡
)
==>
(
≡
ₚ
))
(
elements
(
C
:=
C
))
.
Proof
.
Proof
.
intros
??
E
.
apply
NoDup_Permutation
.
intros
??
E
.
apply
NoDup_Permutation
.
...
@@ -24,6 +32,7 @@ Proof.
...
@@ -24,6 +32,7 @@ Proof.
-
apply
NoDup_elements
.
-
apply
NoDup_elements
.
-
intros
.
by
rewrite
!
elem_of_elements
,
E
.
-
intros
.
by
rewrite
!
elem_of_elements
,
E
.
Qed
.
Qed
.
Lemma
elements_empty
:
elements
(
∅
:
C
)
=
[]
.
Lemma
elements_empty
:
elements
(
∅
:
C
)
=
[]
.
Proof
.
Proof
.
apply
elem_of_nil_inv
;
intros
x
.
apply
elem_of_nil_inv
;
intros
x
.
...
@@ -49,8 +58,10 @@ Proof.
...
@@ -49,8 +58,10 @@ Proof.
intros
x
.
rewrite
!
elem_of_elements
;
auto
.
intros
x
.
rewrite
!
elem_of_elements
;
auto
.
Qed
.
Qed
.
(** * The [size] operation *)
Global
Instance
collection_size_proper
:
Proper
((
≡
)
==>
(
=
))
(
@
size
C
_)
.
Global
Instance
collection_size_proper
:
Proper
((
≡
)
==>
(
=
))
(
@
size
C
_)
.
Proof
.
intros
??
E
.
apply
Permutation_length
.
by
rewrite
E
.
Qed
.
Proof
.
intros
??
E
.
apply
Permutation_length
.
by
rewrite
E
.
Qed
.
Lemma
size_empty
:
size
(
∅
:
C
)
=
0
.
Lemma
size_empty
:
size
(
∅
:
C
)
=
0
.
Proof
.
unfold
size
,
collection_size
.
simpl
.
by
rewrite
elements_empty
.
Qed
.
Proof
.
unfold
size
,
collection_size
.
simpl
.
by
rewrite
elements_empty
.
Qed
.
Lemma
size_empty_inv
(
X
:
C
)
:
size
X
=
0
→
X
≡
∅.
Lemma
size_empty_inv
(
X
:
C
)
:
size
X
=
0
→
X
≡
∅.
...
@@ -62,14 +73,7 @@ Lemma size_empty_iff (X : C) : size X = 0 ↔ X ≡ ∅.
...
@@ -62,14 +73,7 @@ Lemma size_empty_iff (X : C) : size X = 0 ↔ X ≡ ∅.
Proof
.
split
.
apply
size_empty_inv
.
by
intros
->
;
rewrite
size_empty
.
Qed
.
Proof
.
split
.
apply
size_empty_inv
.
by
intros
->
;
rewrite
size_empty
.
Qed
.
Lemma
size_non_empty_iff
(
X
:
C
)
:
size
X
≠
0
↔
X
≢
∅.
Lemma
size_non_empty_iff
(
X
:
C
)
:
size
X
≠
0
↔
X
≢
∅.
Proof
.
by
rewrite
size_empty_iff
.
Qed
.
Proof
.
by
rewrite
size_empty_iff
.
Qed
.
Lemma
size_singleton
(
x
:
A
)
:
size
{[
x
]}
=
1
.
Proof
.
unfold
size
,
collection_size
.
simpl
.
by
rewrite
elements_singleton
.
Qed
.
Lemma
size_singleton_inv
X
x
y
:
size
X
=
1
→
x
∈
X
→
y
∈
X
→
x
=
y
.
Proof
.
unfold
size
,
collection_size
.
simpl
.
rewrite
<-!
elem_of_elements
.
generalize
(
elements
X
)
.
intros
[|?
l
];
intro
;
simplify_eq
/=.
rewrite
(
nil_length_inv
l
),
!
elem_of_list_singleton
by
done
;
congruence
.
Qed
.
Lemma
collection_choose_or_empty
X
:
(
∃
x
,
x
∈
X
)
∨
X
≡
∅.
Lemma
collection_choose_or_empty
X
:
(
∃
x
,
x
∈
X
)
∨
X
≡
∅.
Proof
.
Proof
.
destruct
(
elements
X
)
as
[|
x
l
]
eqn
:
HX
;
[
right
|
left
]
.
destruct
(
elements
X
)
as
[|
x
l
]
eqn
:
HX
;
[
right
|
left
]
.
...
@@ -85,6 +89,15 @@ Proof.
...
@@ -85,6 +89,15 @@ Proof.
intros
Hsz
.
destruct
(
collection_choose_or_empty
X
)
as
[|
HX
];
[
done
|]
.
intros
Hsz
.
destruct
(
collection_choose_or_empty
X
)
as
[|
HX
];
[
done
|]
.
contradict
Hsz
.
rewrite
HX
,
size_empty
;
lia
.
contradict
Hsz
.
rewrite
HX
,
size_empty
;
lia
.
Qed
.
Qed
.
Lemma
size_singleton
(
x
:
A
)
:
size
{[
x
]}
=
1
.
Proof
.
unfold
size
,
collection_size
.
simpl
.
by
rewrite
elements_singleton
.
Qed
.
Lemma
size_singleton_inv
X
x
y
:
size
X
=
1
→
x
∈
X
→
y
∈
X
→
x
=
y
.
Proof
.
unfold
size
,
collection_size
.
simpl
.
rewrite
<-!
elem_of_elements
.
generalize
(
elements
X
)
.
intros
[|?
l
];
intro
;
simplify_eq
/=.
rewrite
(
nil_length_inv
l
),
!
elem_of_list_singleton
by
done
;
congruence
.
Qed
.
Lemma
size_1_elem_of
X
:
size
X
=
1
→
∃
x
,
X
≡
{[
x
]}
.
Lemma
size_1_elem_of
X
:
size
X
=
1
→
∃
x
,
X
≡
{[
x
]}
.
Proof
.
Proof
.
intros
E
.
destruct
(
size_pos_elem_of
X
);
auto
with
lia
.
intros
E
.
destruct
(
size_pos_elem_of
X
);
auto
with
lia
.
...
@@ -92,6 +105,7 @@ Proof.
...
@@ -92,6 +105,7 @@ Proof.
-
rewrite
elem_of_singleton
.
eauto
using
size_singleton_inv
.
-
rewrite
elem_of_singleton
.
eauto
using
size_singleton_inv
.
-
set_solver
.
-
set_solver
.
Qed
.
Qed
.
Lemma
size_union
X
Y
:
X
⊥
Y
→
size
(
X
∪
Y
)
=
size
X
+
size
Y
.
Lemma
size_union
X
Y
:
X
⊥
Y
→
size
(
X
∪
Y
)
=
size
X
+
size
Y
.
Proof
.
Proof
.
intros
.
unfold
size
,
collection_size
.
simpl
.
rewrite
<-
app_length
.
intros
.
unfold
size
,
collection_size
.
simpl
.
rewrite
<-
app_length
.
...
@@ -101,18 +115,13 @@ Proof.
...
@@ -101,18 +115,13 @@ Proof.
intros
x
;
rewrite
!
elem_of_elements
;
set_solver
.
intros
x
;
rewrite
!
elem_of_elements
;
set_solver
.
-
intros
.
by
rewrite
elem_of_app
,
!
elem_of_elements
,
elem_of_union
.
-
intros
.
by
rewrite
elem_of_app
,
!
elem_of_elements
,
elem_of_union
.
Qed
.
Qed
.
Instance
elem_of_dec_slow
(
x
:
A
)
(
X
:
C
)
:
Decision
(
x
∈
X
)
|
100
.
Proof
.
refine
(
cast_if
(
decide_rel
(
∈
)
x
(
elements
X
)));
by
rewrite
<-
(
elem_of_elements
_)
.
Defined
.
Lemma
size_union_alt
X
Y
:
size
(
X
∪
Y
)
=
size
X
+
size
(
Y
∖
X
)
.
Lemma
size_union_alt
X
Y
:
size
(
X
∪
Y
)
=
size
X
+
size
(
Y
∖
X
)
.
Proof
.
Proof
.
rewrite
<-
size_union
by
set_solver
.
rewrite
<-
size_union
by
set_solver
.
setoid_replace
(
Y
∖
X
)
with
((
Y
∪
X
)
∖
X
)
by
set_solver
.
setoid_replace
(
Y
∖
X
)
with
((
Y
∪
X
)
∖
X
)
by
set_solver
.
rewrite
<-
union_difference
,
(
comm
(
∪
));
set_solver
.
rewrite
<-
union_difference
,
(
comm
(
∪
));
set_solver
.
Qed
.
Qed
.
Lemma
subseteq_size
X
Y
:
X
⊆
Y
→
size
X
≤
size
Y
.
Lemma
subseteq_size
X
Y
:
X
⊆
Y
→
size
X
≤
size
Y
.
Proof
.
intros
.
rewrite
(
union_difference
X
Y
),
size_union_alt
by
done
.
lia
.
Qed
.
Proof
.
intros
.
rewrite
(
union_difference
X
Y
),
size_union_alt
by
done
.
lia
.
Qed
.
Lemma
subset_size
X
Y
:
X
⊂
Y
→
size
X
<
size
Y
.
Lemma
subset_size
X
Y
:
X
⊂
Y
→
size
X
<
size
Y
.
...
@@ -122,6 +131,8 @@ Proof.
...
@@ -122,6 +131,8 @@ Proof.
cut
(
size
(
Y
∖
X
)
≠
0
);
[
lia
|]
.
cut
(
size
(
Y
∖
X
)
≠
0
);
[
lia
|]
.
by
apply
size_non_empty_iff
,
non_empty_difference
.
by
apply
size_non_empty_iff
,
non_empty_difference
.
Qed
.
Qed
.
(** * Induction principles *)
Lemma
collection_wf
:
wf
(
strict
(
@
subseteq
C
_))
.
Lemma
collection_wf
:
wf
(
strict
(
@
subseteq
C
_))
.
Proof
.
apply
(
wf_projected
(
<
)
size
);
auto
using
subset_size
,
lt_wf
.
Qed
.
Proof
.
apply
(
wf_projected
(
<
)
size
);
auto
using
subset_size
,
lt_wf
.
Qed
.
Lemma
collection_ind
(
P
:
C
→
Prop
)
:
Lemma
collection_ind
(
P
:
C
→
Prop
)
:
...
@@ -135,6 +146,8 @@ Proof.
...
@@ -135,6 +146,8 @@ Proof.
apply
Hadd
.
set_solver
.
apply
IH
;
set_solver
.
apply
Hadd
.
set_solver
.
apply
IH
;
set_solver
.
-
by
rewrite
HX
.
-
by
rewrite
HX
.
Qed
.
Qed
.
(** * The [collection_fold] operation *)
Lemma
collection_fold_ind
{
B
}
(
P
:
B
→
C
→
Prop
)
(
f
:
A
→
B
→
B
)
(
b
:
B
)
:
Lemma
collection_fold_ind
{
B
}
(
P
:
B
→
C
→
Prop
)
(
f
:
A
→
B
→
B
)
(
b
:
B
)
:
Proper
((
=
)
==>
(
≡
)
==>
iff
)
P
→
Proper
((
=
)
==>
(
≡
)
==>
iff
)
P
→
P
b
∅
→
(
∀
x
X
r
,
x
∉
X
→
P
r
X
→
P
(
f
x
r
)
({[
x
]}
∪
X
))
→
P
b
∅
→
(
∀
x
X
r
,
x
∉
X
→
P
r
X
→
P
(
f
x
r
)
({[
x
]}
∪
X
))
→
...
@@ -156,6 +169,8 @@ Lemma collection_fold_proper {B} (R : relation B) `{!Equivalence R}
...
@@ -156,6 +169,8 @@ Lemma collection_fold_proper {B} (R : relation B) `{!Equivalence R}
(
Hf
:
∀
a1
a2
b
,
R
(
f
a1
(
f
a2
b
))
(
f
a2
(
f
a1
b
)))
:
(
Hf
:
∀
a1
a2
b
,
R
(
f
a1
(
f
a2
b
))
(
f
a2
(
f
a1
b
)))
:
Proper
((
≡
)
==>
R
)
(
collection_fold
f
b
:
C
→
B
)
.
Proper
((
≡
)
==>
R
)
(
collection_fold
f
b
:
C
→
B
)
.
Proof
.
intros
??
E
.
apply
(
foldr_permutation
R
f
b
);
auto
.
by
rewrite
E
.
Qed
.
Proof
.
intros
??
E
.
apply
(
foldr_permutation
R
f
b
);
auto
.
by
rewrite
E
.
Qed
.
(** * Decision procedures *)
Global
Instance
set_Forall_dec
`
(
P
:
A
→
Prop
)
Global
Instance
set_Forall_dec
`
(
P
:
A
→
Prop
)
`{
∀
x
,
Decision
(
P
x
)}
X
:
Decision
(
set_Forall
P
X
)
|
100
.
`{
∀
x
,
Decision
(
P
x
)}
X
:
Decision
(
set_Forall
P
X
)
|
100
.
Proof
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment