Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
stdpp
Commits
504f25ae
Commit
504f25ae
authored
Jan 04, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
make it compile with Coq 8.5-rc1
parent
19d614d6
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
4 deletions
+4
-4
theories/collections.v
theories/collections.v
+4
-4
No files found.
theories/collections.v
View file @
504f25ae
...
@@ -599,7 +599,7 @@ Section finite.
...
@@ -599,7 +599,7 @@ Section finite.
Lemma
empty_finite
:
set_finite
∅
.
Lemma
empty_finite
:
set_finite
∅
.
Proof
.
by
exists
[]
;
intros
?
;
rewrite
elem_of_empty
.
Qed
.
Proof
.
by
exists
[]
;
intros
?
;
rewrite
elem_of_empty
.
Qed
.
Lemma
singleton_finite
(
x
:
A
)
:
set_finite
{[
x
]}.
Lemma
singleton_finite
(
x
:
A
)
:
set_finite
{[
x
]}.
Proof
.
exists
[
x
]
;
intros
y
->
/
elem_of_singleton
;
left
.
Qed
.
Proof
.
exists
[
x
]
;
intros
y
->
%
elem_of_singleton
;
left
.
Qed
.
Lemma
union_finite
X
Y
:
set_finite
X
→
set_finite
Y
→
set_finite
(
X
∪
Y
).
Lemma
union_finite
X
Y
:
set_finite
X
→
set_finite
Y
→
set_finite
(
X
∪
Y
).
Proof
.
Proof
.
intros
[
lX
?]
[
lY
?]
;
exists
(
lX
++
lY
)
;
intros
x
.
intros
[
lX
?]
[
lY
?]
;
exists
(
lX
++
lY
)
;
intros
x
.
...
@@ -614,9 +614,9 @@ End finite.
...
@@ -614,9 +614,9 @@ End finite.
Section
more_finite
.
Section
more_finite
.
Context
`
{
Collection
A
B
}.
Context
`
{
Collection
A
B
}.
Lemma
intersection_finite_l
X
Y
:
set_finite
X
→
set_finite
(
X
∩
Y
).
Lemma
intersection_finite_l
X
Y
:
set_finite
X
→
set_finite
(
X
∩
Y
).
Proof
.
intros
[
l
?]
;
exists
l
;
intros
x
[??]
/
elem_of_intersection
;
auto
.
Qed
.
Proof
.
intros
[
l
?]
;
exists
l
;
intros
x
[??]
%
elem_of_intersection
;
auto
.
Qed
.
Lemma
intersection_finite_r
X
Y
:
set_finite
Y
→
set_finite
(
X
∩
Y
).
Lemma
intersection_finite_r
X
Y
:
set_finite
Y
→
set_finite
(
X
∩
Y
).
Proof
.
intros
[
l
?]
;
exists
l
;
intros
x
[??]
/
elem_of_intersection
;
auto
.
Qed
.
Proof
.
intros
[
l
?]
;
exists
l
;
intros
x
[??]
%
elem_of_intersection
;
auto
.
Qed
.
Lemma
difference_finite
X
Y
:
set_finite
X
→
set_finite
(
X
∖
Y
).
Lemma
difference_finite
X
Y
:
set_finite
X
→
set_finite
(
X
∖
Y
).
Proof
.
intros
[
l
?]
;
exists
l
;
intros
x
[??]
/
elem_of_difference
;
auto
.
Qed
.
Proof
.
intros
[
l
?]
;
exists
l
;
intros
x
[??]
%
elem_of_difference
;
auto
.
Qed
.
End
more_finite
.
End
more_finite
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment