Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
432f80da
Commit
432f80da
authored
4 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Shorten proofs, more consistent meta variables, and order.
parent
2a2fd265
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!234
some map lemmas
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/fin_map_dom.v
+33
-55
33 additions, 55 deletions
theories/fin_map_dom.v
with
33 additions
and
55 deletions
theories/fin_map_dom.v
+
33
−
55
View file @
432f80da
...
@@ -165,59 +165,37 @@ Proof.
...
@@ -165,59 +165,37 @@ Proof.
Qed
.
Qed
.
Lemma
dom_singleton_inv
{
A
}
(
m
:
M
A
)
i
:
Lemma
dom_singleton_inv
{
A
}
(
m
:
M
A
)
i
:
dom
D
m
≡
{[
i
]}
→
∃
v
,
m
=
{[
i
:=
v
]}
.
dom
D
m
≡
{[
i
]}
→
∃
x
,
m
=
{[
i
:=
x
]}
.
Proof
.
Proof
.
intros
Hdom
.
intros
Hdom
.
assert
(
is_Some
(
m
!!
i
))
as
[
x
?]
.
destruct
(
m
!!
i
)
as
[
x
|]
eqn
:
He
.
{
apply
(
elem_of_dom
(
D
:=
D
));
set_solver
.
}
-
exists
x
.
rewrite
<-
insert_empty
.
exists
x
.
apply
map_eq
;
intros
j
.
apply
map_eq
;
intros
i'
.
destruct
(
decide
(
i
=
j
));
simplify_map_eq
;
[
done
|]
.
destruct
(
decide
(
i
=
i'
));
subst
.
apply
not_elem_of_dom
.
set_solver
.
+
rewrite
lookup_insert
;
eauto
.
+
rewrite
lookup_insert_ne
;
eauto
.
rewrite
lookup_empty
.
apply
not_elem_of_dom
.
set_solver
.
-
cut
(
i
∈
dom
D
m
);
[|
set_solver
]
.
rewrite
elem_of_dom
,
He
.
intros
[
x
?];
congruence
.
Qed
.
Qed
.
Lemma
dom_union_inv
`{
!
RelDecision
(
∈@
{
D
})}
{
A
}
(
m
:
M
A
)
(
d1
d2
:
D
)
:
d1
##
d2
→
Lemma
dom_union_inv
`{
!
RelDecision
(
∈@
{
D
})}
{
A
}
(
m
:
M
A
)
(
X1
X2
:
D
)
:
dom
D
m
≡
d1
∪
d2
→
X1
##
X2
→
∃
m1
m2
,
m1
##
ₘ
m2
∧
m
=
m1
∪
m2
∧
dom
D
m1
≡
d1
∧
dom
D
m2
≡
d2
.
dom
D
m
≡
X1
∪
X2
→
∃
m1
m2
,
m
=
m1
∪
m2
∧
m1
##
ₘ
m2
∧
dom
D
m1
≡
X1
∧
dom
D
m2
≡
X2
.
Proof
.
Proof
.
revert
d1
d2
.
intros
.
induction
m
as
[|
a
v
m
Hfresh
IHm
]
using
map_ind
;
intros
d1
d2
Hdisj
Hdom
.
exists
(
filter
(
λ
'
(
k
,
x
),
k
∈
X1
)
m
),
(
filter
(
λ
'
(
k
,
x
),
k
∉
X1
)
m
)
.
-
eexists
∅
,
∅.
assert
(
filter
(
λ
'
(
k
,
_),
k
∈
X1
)
m
##
ₘ
filter
(
λ
'
(
k
,
_),
k
∉
X1
)
m
)
.
rewrite
dom_empty
in
Hdom
.
rewrite
dom_empty
.
{
apply
map_disjoint_filter
.
}
rewrite
(
left_id_L
_
(
∪
))
.
split_and
!
;
[|
done
|
|]
.
split_and
!
;
[
apply
map_disjoint_empty_l
|
set_solver
.
.
].
-
apply
map_eq
;
intros
i
.
apply
option_eq
;
intros
x
.
-
rename
select
(
m
!!
a
=
None
)
into
Hma
.
rewrite
lookup_union_Some
,
!
map_filter_lookup_Some
by
done
.
apply
not_elem_of_dom
in
Hma
.
destruct
(
decide
(
i
∈
X1
));
naive_solver
.
rewrite
dom_insert
in
Hdom
.
-
apply
dom_filter
;
intros
i
;
split
;
[|
naive_solver
]
.
assert
(
a
∈
d1
∨
a
∈
d2
)
as
[
Ha
|
Ha
]
by
set_solver
.
intros
.
assert
(
is_Some
(
m
!!
i
))
as
[
x
?]
by
(
apply
(
elem_of_dom
(
D
:=
D
));
set_solver
)
.
(* With ssreflect we could do a [wlog] proof here since these
naive_solver
.
two cases are symmetric. *)
-
apply
dom_filter
;
intros
i
;
split
.
+
rewrite
(
union_difference_singleton
a
d1
)
in
Hdom
by
done
.
+
intros
.
assert
(
is_Some
(
m
!!
i
))
as
[
x
?]
by
(
apply
(
elem_of_dom
(
D
:=
D
));
set_solver
)
.
rewrite
<-
(
assoc
_)
in
Hdom
.
naive_solver
.
apply
union_cancel_l
in
Hdom
;
[
|
set_solver
.
.
].
+
intros
(
x
&
?
&
?)
.
apply
dec_stable
;
intros
?
.
apply
IHm
in
Hdom
as
(
m1
&
m2
&
Hmdisj
&
Hmunion
&
Hm1
&
Hm2
);
[
|
set_solver
]
.
assert
(
m
!!
i
=
None
)
by
(
apply
not_elem_of_dom
;
set_solver
)
.
exists
(
<
[
a
:=
v
]
>
m1
),
m2
.
naive_solver
.
split_and
!
;
auto
.
*
apply
map_disjoint_dom
.
rewrite
dom_insert
.
set_solver
-
Hma
Hmdisj
Hmunion
.
*
rewrite
<-
insert_union_l
.
congruence
.
*
rewrite
dom_insert
,
Hm1
.
by
rewrite
<-
union_difference_singleton
.
+
rewrite
(
union_difference_singleton
a
d2
)
in
Hdom
by
done
.
rewrite
(
assoc
_),
(
comm
_
d1
),
<-
(
assoc
_)
in
Hdom
.
apply
union_cancel_l
in
Hdom
;
[
|
set_solver
.
.
].
apply
IHm
in
Hdom
as
(
m1
&
m2
&
Hmdisj
&
Hmunion
&
Hm1
&
Hm2
);
[
|
set_solver
]
.
exists
m1
,
(
<
[
a
:=
v
]
>
m2
)
.
split_and
!
;
auto
.
*
apply
map_disjoint_dom
.
rewrite
dom_insert
.
set_solver
-
Hma
Hmdisj
Hmunion
.
*
rewrite
!
insert_union_singleton_l
,
(
assoc
_)
.
rewrite
(
map_union_comm
m1
),
<-
(
assoc
_),
Hmunion
;
[
done
|]
.
apply
map_disjoint_dom
.
rewrite
dom_singleton
,
Hm1
.
set_solver
-
Hma
Hmdisj
Hmunion
.
*
rewrite
dom_insert
,
Hm2
.
by
rewrite
<-
union_difference_singleton
.
Qed
.
Qed
.
(** If [D] has Leibniz equality, we can show an even stronger result. This is a
(** If [D] has Leibniz equality, we can show an even stronger result. This is a
...
@@ -265,12 +243,12 @@ Section leibniz.
...
@@ -265,12 +243,12 @@ Section leibniz.
dom
D
(
list_to_map
l
:
M
A
)
=
list_to_set
l
.
*
1
.
dom
D
(
list_to_map
l
:
M
A
)
=
list_to_set
l
.
*
1
.
Proof
.
unfold_leibniz
.
apply
dom_list_to_map
.
Qed
.
Proof
.
unfold_leibniz
.
apply
dom_list_to_map
.
Qed
.
Lemma
dom_singleton_inv_L
{
A
}
(
m
:
M
A
)
i
:
Lemma
dom_singleton_inv_L
{
A
}
(
m
:
M
A
)
i
:
dom
D
m
=
{[
i
]}
→
∃
v
,
m
=
{[
i
:=
v
]}
.
dom
D
m
=
{[
i
]}
→
∃
x
,
m
=
{[
i
:=
x
]}
.
Proof
.
unfold_leibniz
.
apply
dom_singleton_inv
.
Qed
.
Proof
.
unfold_leibniz
.
apply
dom_singleton_inv
.
Qed
.
Lemma
dom_union_inv_L
`{
!
RelDecision
(
∈@
{
D
})}
{
A
}
(
m
:
M
A
)
(
d
1
d
2
:
D
)
:
Lemma
dom_union_inv_L
`{
!
RelDecision
(
∈@
{
D
})}
{
A
}
(
m
:
M
A
)
(
X
1
X
2
:
D
)
:
d
1
##
d
2
→
X
1
##
X
2
→
dom
D
m
=
d
1
∪
d
2
→
dom
D
m
=
X
1
∪
X
2
→
∃
m1
m2
,
m
1
##
ₘ
m2
∧
m
=
m1
∪
m2
∧
dom
D
m1
=
d
1
∧
dom
D
m2
=
d
2
.
∃
m1
m2
,
m
=
m1
∪
m2
∧
m1
##
ₘ
m2
∧
dom
D
m1
=
X
1
∧
dom
D
m2
=
X
2
.
Proof
.
unfold_leibniz
.
apply
dom_union_inv
.
Qed
.
Proof
.
unfold_leibniz
.
apply
dom_union_inv
.
Qed
.
End
leibniz
.
End
leibniz
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment