Skip to content
Snippets Groups Projects
Commit 3bc47928 authored by Ralf Jung's avatar Ralf Jung
Browse files

split up list.v into smaller files

parent 72579d23
No related branches found
No related tags found
1 merge request!594split up list.v into smaller files
...@@ -52,6 +52,11 @@ stdpp/lexico.v ...@@ -52,6 +52,11 @@ stdpp/lexico.v
stdpp/propset.v stdpp/propset.v
stdpp/decidable.v stdpp/decidable.v
stdpp/list.v stdpp/list.v
stdpp/list_basics.v
stdpp/list_relations.v
stdpp/list_monad.v
stdpp/list_misc.v
stdpp/list_tactics.v
stdpp/list_numbers.v stdpp/list_numbers.v
stdpp/functions.v stdpp/functions.v
stdpp/hlist.v stdpp/hlist.v
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
(** This file collects general purpose definitions and theorems on (** This file collects general purpose definitions and theorems on
lists of numbers that are not in the Coq standard library. *) lists of numbers that are not in the Coq standard library. *)
From stdpp Require Export list. From stdpp Require Export list_basics list_monad list_misc list_tactics.
From stdpp Require Import options. From stdpp Require Import options.
(** * Definitions *) (** * Definitions *)
......
This diff is collapsed.
From Coq Require Export Permutation.
From stdpp Require Export numbers base option list_basics list_relations list_monad.
From stdpp Require Import options.
(** * Reflection over lists *)
(** We define a simple data structure [rlist] to capture a syntactic
representation of lists consisting of constants, applications and the nil list.
Note that we represent [(x ::.)] as [rapp (rnode [x])]. For now, we abstract
over the type of constants, but later we use [nat]s and a list representing
a corresponding environment. *)
Inductive rlist (A : Type) :=
rnil : rlist A | rnode : A rlist A | rapp : rlist A rlist A rlist A.
Global Arguments rnil {_} : assert.
Global Arguments rnode {_} _ : assert.
Global Arguments rapp {_} _ _ : assert.
Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
match t with
| rnil => [] | rnode l => [l] | rapp t1 t2 => to_list t1 ++ to_list t2
end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat list A :=
fix go t :=
match t with
| rnil => []
| rnode i => default [] (E !! i)
| rapp t1 t2 => go t1 ++ go t2
end.
(** A simple quoting mechanism using type classes. [QuoteLookup E1 E2 x i]
means: starting in environment [E1], look up the index [i] corresponding to the
constant [x]. In case [x] has a corresponding index [i] in [E1], the original
environment is given back as [E2]. Otherwise, the environment [E2] is extended
with a binding [i] for [x]. *)
Section quote_lookup.
Context {A : Type}.
Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0 := {}.
Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0 := {}.
Global Instance quote_lookup_further E1 E2 x i y :
QuoteLookup E1 E2 x i QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000 := {}.
End quote_lookup.
Section quote.
Context {A : Type}.
Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
Global Instance quote_nil E1 : Quote E1 E1 [] rnil := {}.
Global Instance quote_node E1 E2 l i:
QuoteLookup E1 E2 l i Quote E1 E2 l (rnode i) | 1000 := {}.
Global Instance quote_cons E1 E2 E3 x l i t :
QuoteLookup E1 E2 [x] i
Quote E2 E3 l t Quote E1 E3 (x :: l) (rapp (rnode i) t) := {}.
Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
Quote E1 E2 l1 t1 Quote E2 E3 l2 t2 Quote E1 E3 (l1 ++ l2) (rapp t1 t2) := {}.
End quote.
Section eval.
Context {A} (E : env A).
Lemma eval_alt t : eval E t = to_list t ≫= default [] (E !!.).
Proof.
induction t; csimpl.
- done.
- by rewrite (right_id_L [] (++)).
- rewrite bind_app. by f_equal.
Qed.
Lemma eval_eq t1 t2 : to_list t1 = to_list t2 eval E t1 = eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_Permutation t1 t2 :
to_list t1 to_list t2 eval E t1 eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_submseteq t1 t2 :
to_list t1 ⊆+ to_list t2 eval E t1 ⊆+ eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.
(** * Tactics *)
Ltac quote_Permutation :=
match goal with
| |- ?l1 ?l2 =>
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
change (rlist.eval E3 t1 rlist.eval E3 t2)
end end
end.
Ltac solve_Permutation :=
quote_Permutation; apply rlist.eval_Permutation;
compute_done.
Ltac quote_submseteq :=
match goal with
| |- ?l1 ⊆+ ?l2 =>
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
change (rlist.eval E3 t1 ⊆+ rlist.eval E3 t2)
end end
end.
Ltac solve_submseteq :=
quote_submseteq; apply rlist.eval_submseteq;
compute_done.
Ltac decompose_elem_of_list := repeat
match goal with
| H : ?x [] |- _ => by destruct (not_elem_of_nil x)
| H : _ _ :: _ |- _ => apply elem_of_cons in H; destruct H
| H : _ _ ++ _ |- _ => apply elem_of_app in H; destruct H
end.
Ltac solve_length :=
simplify_eq/=;
repeat (rewrite length_fmap || rewrite length_app);
repeat match goal with
| H : _ =@{list _} _ |- _ => apply (f_equal length) in H
| H : Forall2 _ _ _ |- _ => apply Forall2_length in H
| H : context[length (_ <$> _)] |- _ => rewrite length_fmap in H
end; done || congruence.
Ltac simplify_list_eq ::= repeat
match goal with
| _ => progress simplify_eq/=
| H : [?x] !! ?i = Some ?y |- _ =>
destruct i; [change (Some x = Some y) in H | discriminate]
| H : _ <$> _ = [] |- _ => apply fmap_nil_inv in H
| H : [] = _ <$> _ |- _ => symmetry in H; apply fmap_nil_inv in H
| H : zip_with _ _ _ = [] |- _ => apply zip_with_nil_inv in H; destruct H
| H : [] = zip_with _ _ _ |- _ => symmetry in H
| |- context [(_ ++ _) ++ _] => rewrite <-(assoc_L (++))
| H : context [(_ ++ _) ++ _] |- _ => rewrite <-(assoc_L (++)) in H
| H : context [_ <$> (_ ++ _)] |- _ => rewrite fmap_app in H
| |- context [_ <$> (_ ++ _)] => rewrite fmap_app
| |- context [_ ++ []] => rewrite (right_id_L [] (++))
| H : context [_ ++ []] |- _ => rewrite (right_id_L [] (++)) in H
| |- context [take _ (_ <$> _)] => rewrite <-fmap_take
| H : context [take _ (_ <$> _)] |- _ => rewrite <-fmap_take in H
| |- context [drop _ (_ <$> _)] => rewrite <-fmap_drop
| H : context [drop _ (_ <$> _)] |- _ => rewrite <-fmap_drop in H
| H : _ ++ _ = _ ++ _ |- _ =>
repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
apply app_inj_1 in H; [destruct H|solve_length]
| H : _ ++ _ = _ ++ _ |- _ =>
repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
apply app_inj_2 in H; [destruct H|solve_length]
| |- context [zip_with _ (_ ++ _) (_ ++ _)] =>
rewrite zip_with_app by solve_length
| |- context [take _ (_ ++ _)] => rewrite take_app_length' by solve_length
| |- context [drop _ (_ ++ _)] => rewrite drop_app_length' by solve_length
| H : context [zip_with _ (_ ++ _) (_ ++ _)] |- _ =>
rewrite zip_with_app in H by solve_length
| H : context [take _ (_ ++ _)] |- _ =>
rewrite take_app_length' in H by solve_length
| H : context [drop _ (_ ++ _)] |- _ =>
rewrite drop_app_length' in H by solve_length
| H : ?l !! ?i = _, H2 : context [(_ <$> ?l) !! ?i] |- _ =>
rewrite list_lookup_fmap, H in H2
end.
Ltac decompose_Forall_hyps :=
repeat match goal with
| H : Forall _ [] |- _ => clear H
| H : Forall _ (_ :: _) |- _ => rewrite Forall_cons in H; destruct H
| H : Forall _ (_ ++ _) |- _ => rewrite Forall_app in H; destruct H
| H : Forall2 _ [] [] |- _ => clear H
| H : Forall2 _ (_ :: _) [] |- _ => destruct (Forall2_cons_nil_inv _ _ _ H)
| H : Forall2 _ [] (_ :: _) |- _ => destruct (Forall2_nil_cons_inv _ _ _ H)
| H : Forall2 _ [] ?k |- _ => apply Forall2_nil_inv_l in H
| H : Forall2 _ ?l [] |- _ => apply Forall2_nil_inv_r in H
| H : Forall2 _ (_ :: _) (_ :: _) |- _ =>
apply Forall2_cons_1 in H; destruct H
| H : Forall2 _ (_ :: _) ?k |- _ =>
let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
rename k_tl into k
| H : Forall2 _ ?l (_ :: _) |- _ =>
let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
rename l_tl into l
| H : Forall2 _ (_ ++ _) ?k |- _ =>
let k1 := fresh k "_1" in let k2 := fresh k "_2" in
apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
| H : Forall2 _ ?l (_ ++ _) |- _ =>
let l1 := fresh l "_1" in let l2 := fresh l "_2" in
apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
| _ => progress simplify_eq/=
| H : Forall3 _ _ (_ :: _) _ |- _ =>
apply Forall3_cons_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall2 _ (_ :: _) ?k |- _ =>
apply Forall2_cons_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ ?l (_ :: _) |- _ =>
apply Forall2_cons_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) (_ ++ _) |- _ =>
apply Forall2_app_inv in H; [destruct H|solve_length]
| H : Forall2 _ ?l (_ ++ _) |- _ =>
apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) ?k |- _ =>
apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall3 _ _ (_ ++ _) _ |- _ =>
apply Forall3_app_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _ =>
(* to avoid some stupid loops, not fool proof *)
unless (P x) by auto using Forall_app_2, Forall_nil_2;
let E := fresh in
assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
| H : Forall2 ?P ?l ?k |- _ =>
match goal with
| H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ =>
unless (P x y) by done; let E := fresh in
assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
lazy beta in E
| H1 : l !! ?i = Some ?x |- _ =>
try (match goal with _ : k !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
| H2 : k !! ?i = Some ?y |- _ =>
try (match goal with _ : l !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
end
| H : Forall3 ?P ?l ?l' ?k |- _ =>
lazymatch goal with
| H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _ =>
unless (P x y z) by done; let E := fresh in
assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
lazy beta in E
| H1 : l !! _ = Some ?x |- _ =>
destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
| H2 : l' !! _ = Some ?y |- _ =>
destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
| H3 : k !! _ = Some ?z |- _ =>
destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
end
end.
Ltac list_simplifier :=
simplify_eq/=;
repeat match goal with
| _ => progress decompose_Forall_hyps
| _ => progress simplify_list_eq
| H : _ <$> _ = _ :: _ |- _ =>
apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
| H : _ :: _ = _ <$> _ |- _ => symmetry in H
| H : _ <$> _ = _ ++ _ |- _ =>
apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
| H : _ ++ _ = _ <$> _ |- _ => symmetry in H
| H : zip_with _ _ _ = _ :: _ |- _ =>
apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
| H : _ :: _ = zip_with _ _ _ |- _ => symmetry in H
| H : zip_with _ _ _ = _ ++ _ |- _ =>
apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
| H : _ ++ _ = zip_with _ _ _ |- _ => symmetry in H
end.
Ltac decompose_Forall := repeat
match goal with
| |- Forall _ _ => by apply Forall_true
| |- Forall _ [] => constructor
| |- Forall _ (_ :: _) => constructor
| |- Forall _ (_ ++ _) => apply Forall_app_2
| |- Forall _ (_ <$> _) => apply Forall_fmap
| |- Forall _ (_ ≫= _) => apply Forall_bind
| |- Forall2 _ _ _ => apply Forall_Forall2_diag
| |- Forall2 _ [] [] => constructor
| |- Forall2 _ (_ :: _) (_ :: _) => constructor
| |- Forall2 _ (_ ++ _) (_ ++ _) => first
[ apply Forall2_app; [by decompose_Forall |]
| apply Forall2_app; [| by decompose_Forall]]
| |- Forall2 _ (_ <$> _) _ => apply Forall2_fmap_l
| |- Forall2 _ _ (_ <$> _) => apply Forall2_fmap_r
| _ => progress decompose_Forall_hyps
| H : Forall _ (_ <$> _) |- _ => rewrite Forall_fmap in H
| H : Forall _ (_ ≫= _) |- _ => rewrite Forall_bind in H
| |- Forall _ _ =>
apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
| |- Forall2 _ _ _ =>
apply Forall2_same_length_lookup_2; [solve_length|];
intros ?????; progress decompose_Forall_hyps
end.
(** The [simplify_suffix] tactic removes [suffix] hypotheses that are
tautologies, and simplifies [suffix] hypotheses involving [(::)] and
[(++)]. *)
Ltac simplify_suffix := repeat
match goal with
| H : suffix (_ :: _) _ |- _ => destruct (suffix_cons_not _ _ H)
| H : suffix (_ :: _) [] |- _ => apply suffix_nil_inv in H
| H : suffix (_ ++ _) (_ ++ _) |- _ => apply suffix_app_inv in H
| H : suffix (_ :: _) (_ :: _) |- _ =>
destruct (suffix_cons_inv _ _ _ _ H); clear H
| H : suffix ?x ?x |- _ => clear H
| H : suffix ?x (_ :: ?x) |- _ => clear H
| H : suffix ?x (_ ++ ?x) |- _ => clear H
| _ => progress simplify_eq/=
end.
(** The [solve_suffix] tactic tries to solve goals involving [suffix]. It
uses [simplify_suffix] to simplify hypotheses and tries to solve [suffix]
conclusions. This tactic either fails or proves the goal. *)
Ltac solve_suffix := by intuition (repeat
match goal with
| _ => done
| _ => progress simplify_suffix
| |- suffix [] _ => apply suffix_nil
| |- suffix _ _ => reflexivity
| |- suffix _ (_ :: _) => apply suffix_cons_r
| |- suffix _ (_ ++ _) => apply suffix_app_r
| H : suffix _ _ False |- _ => destruct H
end).
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment