Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
3a0b7f82
Commit
3a0b7f82
authored
4 years ago
by
Ralf Jung
Committed by
Robbert Krebbers
4 years ago
Browse files
Options
Downloads
Patches
Plain Diff
some inversion lemmas for map domain
parent
dd04c27a
No related branches found
No related tags found
1 merge request
!234
some map lemmas
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/fin_map_dom.v
+65
-0
65 additions, 0 deletions
theories/fin_map_dom.v
theories/sets.v
+4
-0
4 additions, 0 deletions
theories/sets.v
with
69 additions
and
0 deletions
theories/fin_map_dom.v
+
65
−
0
View file @
3a0b7f82
...
...
@@ -163,6 +163,63 @@ Proof.
-
by
rewrite
dom_empty
.
-
simpl
.
by
rewrite
dom_insert
,
IH
.
Qed
.
Lemma
dom_singleton_inv
{
A
}
(
m
:
M
A
)
i
:
dom
D
m
≡
{[
i
]}
→
∃
v
,
m
=
{[
i
:=
v
]}
.
Proof
.
intros
Hdom
.
destruct
(
m
!!
i
)
as
[
x
|]
eqn
:
He
.
-
exists
x
.
rewrite
<-
insert_empty
.
apply
map_eq
;
intros
i'
.
destruct
(
decide
(
i
=
i'
));
subst
.
+
rewrite
lookup_insert
;
eauto
.
+
rewrite
lookup_insert_ne
;
eauto
.
rewrite
lookup_empty
.
apply
not_elem_of_dom
.
set_solver
.
-
cut
(
i
∈
dom
D
m
);
[|
set_solver
]
.
rewrite
elem_of_dom
,
He
.
intros
[
x
?];
congruence
.
Qed
.
Lemma
dom_union_inv
`{
!
RelDecision
(
∈@
{
D
})}
{
A
}
(
m
:
M
A
)
(
d1
d2
:
D
)
:
d1
##
d2
→
dom
D
m
≡
d1
∪
d2
→
∃
m1
m2
,
m1
##
ₘ
m2
∧
m
=
m1
∪
m2
∧
dom
D
m1
≡
d1
∧
dom
D
m2
≡
d2
.
Proof
.
revert
d1
d2
.
induction
m
as
[|
a
v
m
Hfresh
IHm
]
using
map_ind
;
intros
d1
d2
Hdisj
Hdom
.
-
eexists
∅
,
∅.
rewrite
dom_empty
in
Hdom
.
rewrite
dom_empty
.
rewrite
(
left_id_L
_
(
∪
))
.
split_and
!
;
[
apply
map_disjoint_empty_l
|
set_solver
.
.
].
-
rename
select
(
m
!!
a
=
None
)
into
Hma
.
apply
not_elem_of_dom
in
Hma
.
rewrite
dom_insert
in
Hdom
.
assert
(
a
∈
d1
∨
a
∈
d2
)
as
[
Ha
|
Ha
]
by
set_solver
.
(* With ssreflect we could do a [wlog] proof here since these
two cases are symmetric. *)
+
rewrite
(
union_difference_singleton
a
d1
)
in
Hdom
by
done
.
rewrite
<-
(
assoc
_)
in
Hdom
.
apply
union_cancel_l
in
Hdom
;
[
|
set_solver
.
.
].
apply
IHm
in
Hdom
as
(
m1
&
m2
&
Hmdisj
&
Hmunion
&
Hm1
&
Hm2
);
[
|
set_solver
]
.
exists
(
<
[
a
:=
v
]
>
m1
),
m2
.
split_and
!
;
auto
.
*
apply
map_disjoint_dom
.
rewrite
dom_insert
.
set_solver
-
Hma
Hmdisj
Hmunion
.
*
rewrite
<-
insert_union_l
.
congruence
.
*
rewrite
dom_insert
,
Hm1
.
by
rewrite
<-
union_difference_singleton
.
+
rewrite
(
union_difference_singleton
a
d2
)
in
Hdom
by
done
.
rewrite
(
assoc
_),
(
comm
_
d1
),
<-
(
assoc
_)
in
Hdom
.
apply
union_cancel_l
in
Hdom
;
[
|
set_solver
.
.
].
apply
IHm
in
Hdom
as
(
m1
&
m2
&
Hmdisj
&
Hmunion
&
Hm1
&
Hm2
);
[
|
set_solver
]
.
exists
m1
,
(
<
[
a
:=
v
]
>
m2
)
.
split_and
!
;
auto
.
*
apply
map_disjoint_dom
.
rewrite
dom_insert
.
set_solver
-
Hma
Hmdisj
Hmunion
.
*
rewrite
!
insert_union_singleton_l
,
(
assoc
_)
.
rewrite
(
map_union_comm
m1
),
<-
(
assoc
_),
Hmunion
;
[
done
|]
.
apply
map_disjoint_dom
.
rewrite
dom_singleton
,
Hm1
.
set_solver
-
Hma
Hmdisj
Hmunion
.
*
rewrite
dom_insert
,
Hm2
.
by
rewrite
<-
union_difference_singleton
.
Qed
.
(** If [D] has Leibniz equality, we can show an even stronger result. This is a
common case e.g. when having a [gmap K A] where the key [K] has Leibniz equality
(and thus also [gset K], the usual domain) but the value type [A] does not. *)
...
...
@@ -207,6 +264,14 @@ Section leibniz.
Lemma
dom_list_to_map_L
{
A
}
(
l
:
list
(
K
*
A
))
:
dom
D
(
list_to_map
l
:
M
A
)
=
list_to_set
l
.
*
1
.
Proof
.
unfold_leibniz
.
apply
dom_list_to_map
.
Qed
.
Lemma
dom_singleton_inv_L
{
A
}
(
m
:
M
A
)
i
:
dom
D
m
=
{[
i
]}
→
∃
v
,
m
=
{[
i
:=
v
]}
.
Proof
.
unfold_leibniz
.
apply
dom_singleton_inv
.
Qed
.
Lemma
dom_union_inv_L
`{
!
RelDecision
(
∈@
{
D
})}
{
A
}
(
m
:
M
A
)
(
d1
d2
:
D
)
:
d1
##
d2
→
dom
D
m
=
d1
∪
d2
→
∃
m1
m2
,
m1
##
ₘ
m2
∧
m
=
m1
∪
m2
∧
dom
D
m1
=
d1
∧
dom
D
m2
=
d2
.
Proof
.
unfold_leibniz
.
apply
dom_union_inv
.
Qed
.
End
leibniz
.
(** * Set solver instances *)
...
...
This diff is collapsed.
Click to expand it.
theories/sets.v
+
4
−
0
View file @
3a0b7f82
...
...
@@ -779,6 +779,8 @@ Section set.
intros
?
x
;
split
;
rewrite
!
elem_of_union
,
elem_of_difference
;
[|
intuition
]
.
destruct
(
decide
(
x
∈
X
));
intuition
.
Qed
.
Lemma
union_difference_singleton
x
Y
:
x
∈
Y
→
Y
≡
{[
x
]}
∪
Y
∖
{[
x
]}
.
Proof
.
intros
?
.
apply
union_difference
.
set_solver
.
Qed
.
Lemma
difference_union
X
Y
:
X
∖
Y
∪
Y
≡
X
∪
Y
.
Proof
.
intros
x
.
rewrite
!
elem_of_union
;
rewrite
elem_of_difference
.
...
...
@@ -800,6 +802,8 @@ Section set.
Context
`{
!
LeibnizEquiv
C
}
.
Lemma
union_difference_L
X
Y
:
X
⊆
Y
→
Y
=
X
∪
Y
∖
X
.
Proof
.
unfold_leibniz
.
apply
union_difference
.
Qed
.
Lemma
union_difference_singleton_L
x
Y
:
x
∈
Y
→
Y
=
{[
x
]}
∪
Y
∖
{[
x
]}
.
Proof
.
unfold_leibniz
.
apply
union_difference_singleton
.
Qed
.
Lemma
difference_union_L
X
Y
:
X
∖
Y
∪
Y
=
X
∪
Y
.
Proof
.
unfold_leibniz
.
apply
difference_union
.
Qed
.
Lemma
non_empty_difference_L
X
Y
:
X
⊂
Y
→
Y
∖
X
≠
∅.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment