Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
1d5b61f3
Commit
1d5b61f3
authored
1 year ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
move some tactic tests so they can be run with fewer things compiling
parent
f816088c
No related branches found
No related tags found
1 merge request
!495
solve_proper: add support for subrelation
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
tests/proper.ref
+0
-2
0 additions, 2 deletions
tests/proper.ref
tests/proper.v
+0
-132
0 additions, 132 deletions
tests/proper.v
tests/tactics.ref
+2
-0
2 additions, 0 deletions
tests/tactics.ref
tests/tactics.v
+132
-0
132 additions, 0 deletions
tests/tactics.v
with
134 additions
and
134 deletions
tests/proper.ref
+
0
−
2
View file @
1d5b61f3
The command has indeed failed with message:
No such assumption.
This diff is collapsed.
Click to expand it.
tests/proper.v
+
0
−
132
View file @
1d5b61f3
From
stdpp
Require
Import
prelude
fin_maps
propset
.
(** Some tests for f_equiv. *)
(* Similar to [f_equal], it should solve goals by [reflexivity]. *)
Lemma
test_f_equiv_refl
{
A
}
(
R
:
relation
A
)
`{
!
Equivalence
R
}
x
:
R
x
x
.
Proof
.
f_equiv
.
Qed
.
(* And immediately solve sub-goals by reflexivity *)
Lemma
test_f_equiv_refl_nested
{
A
}
(
R
:
relation
A
)
`{
!
Equivalence
R
}
g
x
y
z
:
Proper
(
R
==>
R
==>
R
)
g
→
R
y
z
→
R
(
g
x
y
)
(
g
x
z
)
.
Proof
.
intros
?
Hyz
.
f_equiv
.
apply
Hyz
.
Qed
.
(* Ensure we can handle [flip]. *)
Lemma
f_equiv_flip
{
A
}
(
R
:
relation
A
)
`{
!
PreOrder
R
}
(
f
:
A
→
A
)
:
Proper
(
R
==>
R
)
f
→
Proper
(
flip
R
==>
flip
R
)
f
.
Proof
.
intros
?
??
EQ
.
f_equiv
.
exact
EQ
.
Qed
.
Section
f_equiv
.
Context
`{
!
Equiv
A
,
!
Equiv
B
,
!
SubsetEq
A
}
.
Lemma
f_equiv1
(
fn
:
A
→
B
)
(
x1
x2
:
A
)
:
Proper
((
≡
)
==>
(
≡
))
fn
→
x1
≡
x2
→
fn
x1
≡
fn
x2
.
Proof
.
intros
.
f_equiv
.
assumption
.
Qed
.
Lemma
f_equiv2
(
fn
:
A
→
B
)
(
x1
x2
:
A
)
:
Proper
((
⊆
)
==>
(
≡
))
fn
→
x1
⊆
x2
→
fn
x1
≡
fn
x2
.
Proof
.
intros
.
f_equiv
.
assumption
.
Qed
.
(* Ensure that we prefer the ≡. *)
Lemma
f_equiv3
(
fn
:
A
→
B
)
(
x1
x2
:
A
)
:
Proper
((
≡
)
==>
(
≡
))
fn
→
Proper
((
⊆
)
==>
(
≡
))
fn
→
x1
≡
x2
→
fn
x1
≡
fn
x2
.
Proof
.
(* The Coq tactic prefers the ⊆. *)
intros
.
Morphisms
.
f_equiv
.
Fail
assumption
.
Restart
.
intros
.
f_equiv
.
assumption
.
Qed
.
End
f_equiv
.
(** Some tests for solve_proper (also testing f_equiv indirectly). *)
(** Test case for #161 *)
Lemma
test_solve_proper_const
{
A
}
(
R
:
relation
A
)
`{
!
Equivalence
R
}
x
:
Proper
(
R
==>
R
)
(
λ
_,
x
)
.
Proof
.
solve_proper
.
Qed
.
Lemma
solve_proper_flip
{
A
}
(
R
:
relation
A
)
`{
!
PreOrder
R
}
(
f
:
A
→
A
)
:
Proper
(
R
==>
R
)
f
→
Proper
(
flip
R
==>
flip
R
)
f
.
Proof
.
solve_proper
.
Qed
.
Section
tests
.
Context
{
A
B
:
Type
}
`{
!
Equiv
A
,
!
Equiv
B
}
.
Context
(
foo
:
A
→
A
)
(
bar
:
A
→
B
)
(
baz
:
B
→
A
→
A
)
.
Context
`{
!
Proper
((
≡
)
==>
(
≡
))
foo
,
!
Proper
((
≡
)
==>
(
≡
))
bar
,
!
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
baz
}
.
Definition
test1
(
x
:
A
)
:=
baz
(
bar
(
foo
x
))
x
.
Goal
Proper
((
≡
)
==>
(
≡
))
test1
.
Proof
.
solve_proper
.
Qed
.
Definition
test2
(
b
:
bool
)
(
x
:
A
)
:=
if
b
then
bar
(
foo
x
)
else
bar
x
.
Goal
∀
b
,
Proper
((
≡
)
==>
(
≡
))
(
test2
b
)
.
Proof
.
solve_proper
.
Qed
.
Definition
test3
(
f
:
nat
→
A
)
:=
baz
(
bar
(
f
0
))
(
f
2
)
.
Goal
Proper
(
pointwise_relation
nat
(
≡
)
==>
(
≡
))
test3
.
Proof
.
solve_proper
.
Qed
.
(* We mirror [discrete_fun] from Iris to have an equivalence on a function
space. *)
Definition
discrete_fun
{
A
}
(
B
:
A
→
Type
)
`{
!∀
x
,
Equiv
(
B
x
)}
:=
∀
x
:
A
,
B
x
.
Local
Instance
discrete_fun_equiv
{
A
}
{
B
:
A
→
Type
}
`{
!∀
x
,
Equiv
(
B
x
)}
:
Equiv
(
discrete_fun
B
)
:=
λ
f
g
,
∀
x
,
f
x
≡
g
x
.
Notation
"A -d> B"
:=
(
@
discrete_fun
A
(
λ
_,
B
)
_)
(
at
level
99
,
B
at
level
200
,
right
associativity
)
.
Definition
test4
x
(
f
:
A
-
d
>
A
)
:=
f
x
.
Goal
∀
x
,
Proper
((
≡
)
==>
(
≡
))
(
test4
x
)
.
Proof
.
solve_proper
.
Qed
.
Lemma
test_subrelation1
(
P
Q
:
Prop
)
:
Proper
((
↔
)
==>
impl
)
id
.
Proof
.
solve_proper
.
Qed
.
End
tests
.
Global
Instance
from_option_proper_test1
`{
Equiv
A
}
{
B
}
(
R
:
relation
B
)
(
f
:
A
→
B
)
:
Proper
((
≡
)
==>
R
)
f
→
Proper
(
R
==>
(
≡
)
==>
R
)
(
from_option
f
)
.
Proof
.
apply
_
.
Qed
.
...
...
@@ -104,41 +7,6 @@ Global Instance from_option_proper_test2 `{Equiv A} {B} (R : relation B) (f : A
Proper
((
≡
)
==>
R
)
f
→
Proper
(
R
==>
(
≡
)
==>
R
)
(
from_option
f
)
.
Proof
.
solve_proper
.
Qed
.
(** The following tests are inspired by Iris's [ofe] structure (here, simplified
to just a type an arbitrary relation), and the discrete function space [A -d> B]
on a Type [A] and OFE [B]. The tests occur when proving [Proper]s for
higher-order functions, which typically occurs while defining functions using
Iris's [fixpoint] operator. *)
Record
setoid
:=
Setoid
{
setoid_car
:>
Type
;
setoid_equiv
:
relation
setoid_car
}
.
Arguments
setoid_equiv
{_}
_
_
.
Definition
myfun
(
A
:
Type
)
(
B
:
setoid
)
:=
A
→
B
.
Definition
myfun_equiv
{
A
B
}
:
relation
(
myfun
A
B
)
:=
pointwise_relation
_
setoid_equiv
.
Definition
myfunS
(
A
:
Type
)
(
B
:
setoid
)
:=
Setoid
(
myfun
A
B
)
myfun_equiv
.
Section
setoid_tests
.
Context
{
A
:
setoid
}
(
f
:
A
→
A
)
(
h
:
A
→
A
→
A
)
.
Context
`{
!
Proper
(
setoid_equiv
==>
setoid_equiv
)
f
,
!
Proper
(
setoid_equiv
==>
setoid_equiv
==>
setoid_equiv
)
h
}
.
Definition
setoid_test1
(
rec
:
myfunS
nat
A
)
:
myfunS
nat
A
:=
λ
n
,
h
(
f
(
rec
n
))
(
rec
n
)
.
Goal
Proper
(
setoid_equiv
==>
setoid_equiv
)
setoid_test1
.
Proof
.
solve_proper
.
Qed
.
Definition
setoid_test2
(
rec
:
myfunS
nat
(
myfunS
nat
A
))
:
myfunS
nat
A
:=
λ
n
,
h
(
f
(
rec
n
n
))
(
rec
n
n
)
.
Goal
Proper
(
setoid_equiv
==>
setoid_equiv
)
setoid_test2
.
Proof
.
solve_proper
.
Qed
.
Definition
setoid_test3
(
rec
:
myfunS
nat
A
)
:
myfunS
nat
(
myfunS
nat
A
)
:=
λ
n
m
,
h
(
f
(
rec
n
))
(
rec
m
)
.
Goal
Proper
(
setoid_equiv
==>
setoid_equiv
)
setoid_test3
.
Proof
.
solve_proper
.
Qed
.
End
setoid_tests
.
Section
map_tests
.
Context
`{
FinMap
K
M
}
`{
Equiv
A
}
.
...
...
This diff is collapsed.
Click to expand it.
tests/tactics.ref
+
2
−
0
View file @
1d5b61f3
...
...
@@ -18,3 +18,5 @@ HQ : Q 5
The command has indeed failed with message:
Tactic failure: ospecialize can only specialize a local hypothesis;
use opose proof instead.
The command has indeed failed with message:
No such assumption.
This diff is collapsed.
Click to expand it.
tests/tactics.v
+
132
−
0
View file @
1d5b61f3
...
...
@@ -168,6 +168,138 @@ Restart.
opose
proof
*
HR
as
HR'
;
[
exact
HP
|
exact
HQ
|
exact
HR'
]
.
Qed
.
(** Some tests for f_equiv. *)
(* Similar to [f_equal], it should solve goals by [reflexivity]. *)
Lemma
test_f_equiv_refl
{
A
}
(
R
:
relation
A
)
`{
!
Equivalence
R
}
x
:
R
x
x
.
Proof
.
f_equiv
.
Qed
.
(* And immediately solve sub-goals by reflexivity *)
Lemma
test_f_equiv_refl_nested
{
A
}
(
R
:
relation
A
)
`{
!
Equivalence
R
}
g
x
y
z
:
Proper
(
R
==>
R
==>
R
)
g
→
R
y
z
→
R
(
g
x
y
)
(
g
x
z
)
.
Proof
.
intros
?
Hyz
.
f_equiv
.
apply
Hyz
.
Qed
.
(* Ensure we can handle [flip]. *)
Lemma
f_equiv_flip
{
A
}
(
R
:
relation
A
)
`{
!
PreOrder
R
}
(
f
:
A
→
A
)
:
Proper
(
R
==>
R
)
f
→
Proper
(
flip
R
==>
flip
R
)
f
.
Proof
.
intros
?
??
EQ
.
f_equiv
.
exact
EQ
.
Qed
.
Section
f_equiv
.
Context
`{
!
Equiv
A
,
!
Equiv
B
,
!
SubsetEq
A
}
.
Lemma
f_equiv1
(
fn
:
A
→
B
)
(
x1
x2
:
A
)
:
Proper
((
≡
)
==>
(
≡
))
fn
→
x1
≡
x2
→
fn
x1
≡
fn
x2
.
Proof
.
intros
.
f_equiv
.
assumption
.
Qed
.
Lemma
f_equiv2
(
fn
:
A
→
B
)
(
x1
x2
:
A
)
:
Proper
((
⊆
)
==>
(
≡
))
fn
→
x1
⊆
x2
→
fn
x1
≡
fn
x2
.
Proof
.
intros
.
f_equiv
.
assumption
.
Qed
.
(* Ensure that we prefer the ≡. *)
Lemma
f_equiv3
(
fn
:
A
→
B
)
(
x1
x2
:
A
)
:
Proper
((
≡
)
==>
(
≡
))
fn
→
Proper
((
⊆
)
==>
(
≡
))
fn
→
x1
≡
x2
→
fn
x1
≡
fn
x2
.
Proof
.
(* The Coq tactic prefers the ⊆. *)
intros
.
Morphisms
.
f_equiv
.
Fail
assumption
.
Restart
.
intros
.
f_equiv
.
assumption
.
Qed
.
End
f_equiv
.
(** Some tests for solve_proper (also testing f_equiv indirectly). *)
(** Test case for #161 *)
Lemma
test_solve_proper_const
{
A
}
(
R
:
relation
A
)
`{
!
Equivalence
R
}
x
:
Proper
(
R
==>
R
)
(
λ
_,
x
)
.
Proof
.
solve_proper
.
Qed
.
Lemma
solve_proper_flip
{
A
}
(
R
:
relation
A
)
`{
!
PreOrder
R
}
(
f
:
A
→
A
)
:
Proper
(
R
==>
R
)
f
→
Proper
(
flip
R
==>
flip
R
)
f
.
Proof
.
solve_proper
.
Qed
.
Section
tests
.
Context
{
A
B
:
Type
}
`{
!
Equiv
A
,
!
Equiv
B
}
.
Context
(
foo
:
A
→
A
)
(
bar
:
A
→
B
)
(
baz
:
B
→
A
→
A
)
.
Context
`{
!
Proper
((
≡
)
==>
(
≡
))
foo
,
!
Proper
((
≡
)
==>
(
≡
))
bar
,
!
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
baz
}
.
Definition
test1
(
x
:
A
)
:=
baz
(
bar
(
foo
x
))
x
.
Goal
Proper
((
≡
)
==>
(
≡
))
test1
.
Proof
.
solve_proper
.
Qed
.
Definition
test2
(
b
:
bool
)
(
x
:
A
)
:=
if
b
then
bar
(
foo
x
)
else
bar
x
.
Goal
∀
b
,
Proper
((
≡
)
==>
(
≡
))
(
test2
b
)
.
Proof
.
solve_proper
.
Qed
.
Definition
test3
(
f
:
nat
→
A
)
:=
baz
(
bar
(
f
0
))
(
f
2
)
.
Goal
Proper
(
pointwise_relation
nat
(
≡
)
==>
(
≡
))
test3
.
Proof
.
solve_proper
.
Qed
.
(* We mirror [discrete_fun] from Iris to have an equivalence on a function
space. *)
Definition
discrete_fun
{
A
}
(
B
:
A
→
Type
)
`{
!∀
x
,
Equiv
(
B
x
)}
:=
∀
x
:
A
,
B
x
.
Local
Instance
discrete_fun_equiv
{
A
}
{
B
:
A
→
Type
}
`{
!∀
x
,
Equiv
(
B
x
)}
:
Equiv
(
discrete_fun
B
)
:=
λ
f
g
,
∀
x
,
f
x
≡
g
x
.
Notation
"A -d> B"
:=
(
@
discrete_fun
A
(
λ
_,
B
)
_)
(
at
level
99
,
B
at
level
200
,
right
associativity
)
.
Definition
test4
x
(
f
:
A
-
d
>
A
)
:=
f
x
.
Goal
∀
x
,
Proper
((
≡
)
==>
(
≡
))
(
test4
x
)
.
Proof
.
solve_proper
.
Qed
.
Lemma
test_subrelation1
(
P
Q
:
Prop
)
:
Proper
((
↔
)
==>
impl
)
id
.
Proof
.
solve_proper
.
Qed
.
End
tests
.
(** The following tests are inspired by Iris's [ofe] structure (here, simplified
to just a type an arbitrary relation), and the discrete function space [A -d> B]
on a Type [A] and OFE [B]. The tests occur when proving [Proper]s for
higher-order functions, which typically occurs while defining functions using
Iris's [fixpoint] operator. *)
Record
setoid
:=
Setoid
{
setoid_car
:>
Type
;
setoid_equiv
:
relation
setoid_car
}
.
Arguments
setoid_equiv
{_}
_
_
.
Definition
myfun
(
A
:
Type
)
(
B
:
setoid
)
:=
A
→
B
.
Definition
myfun_equiv
{
A
B
}
:
relation
(
myfun
A
B
)
:=
pointwise_relation
_
setoid_equiv
.
Definition
myfunS
(
A
:
Type
)
(
B
:
setoid
)
:=
Setoid
(
myfun
A
B
)
myfun_equiv
.
Section
setoid_tests
.
Context
{
A
:
setoid
}
(
f
:
A
→
A
)
(
h
:
A
→
A
→
A
)
.
Context
`{
!
Proper
(
setoid_equiv
==>
setoid_equiv
)
f
,
!
Proper
(
setoid_equiv
==>
setoid_equiv
==>
setoid_equiv
)
h
}
.
Definition
setoid_test1
(
rec
:
myfunS
nat
A
)
:
myfunS
nat
A
:=
λ
n
,
h
(
f
(
rec
n
))
(
rec
n
)
.
Goal
Proper
(
setoid_equiv
==>
setoid_equiv
)
setoid_test1
.
Proof
.
solve_proper
.
Qed
.
Definition
setoid_test2
(
rec
:
myfunS
nat
(
myfunS
nat
A
))
:
myfunS
nat
A
:=
λ
n
,
h
(
f
(
rec
n
n
))
(
rec
n
n
)
.
Goal
Proper
(
setoid_equiv
==>
setoid_equiv
)
setoid_test2
.
Proof
.
solve_proper
.
Qed
.
Definition
setoid_test3
(
rec
:
myfunS
nat
A
)
:
myfunS
nat
(
myfunS
nat
A
)
:=
λ
n
m
,
h
(
f
(
rec
n
))
(
rec
m
)
.
Goal
Proper
(
setoid_equiv
==>
setoid_equiv
)
setoid_test3
.
Proof
.
solve_proper
.
Qed
.
End
setoid_tests
.
(** Regression tests for [naive_solver].
Requires a bunch of other tactics to work so it comes last in this file. *)
Lemma
naive_solver_issue_115
(
P
:
nat
→
Prop
)
(
x
:
nat
)
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment