Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
S
stdpp
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
47
Issues
47
List
Boards
Labels
Service Desk
Milestones
Merge Requests
3
Merge Requests
3
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
stdpp
Commits
10edecb6
Commit
10edecb6
authored
Apr 05, 2018
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Notation `##@{A}`.
parent
210bf091
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
12 additions
and
6 deletions
+12
-6
theories/base.v
theories/base.v
+8
-2
theories/coPset.v
theories/coPset.v
+1
-1
theories/collections.v
theories/collections.v
+2
-2
theories/mapset.v
theories/mapset.v
+1
-1
No files found.
theories/base.v
View file @
10edecb6
...
...
@@ -866,6 +866,10 @@ Infix "##" := disjoint (at level 70) : stdpp_scope.
Notation
"(##)"
:
=
disjoint
(
only
parsing
)
:
stdpp_scope
.
Notation
"( X ##.)"
:
=
(
disjoint
X
)
(
only
parsing
)
:
stdpp_scope
.
Notation
"(.## X )"
:
=
(
λ
Y
,
Y
##
X
)
(
only
parsing
)
:
stdpp_scope
.
Infix
"##@{ A }"
:
=
(@
disjoint
A
_
)
(
at
level
70
,
only
parsing
)
:
stdpp_scope
.
Notation
"(##@{ A } )"
:
=
(@
disjoint
A
_
)
(
only
parsing
)
:
stdpp_scope
.
Infix
"##*"
:
=
(
Forall2
(##))
(
at
level
70
)
:
stdpp_scope
.
Notation
"(##*)"
:
=
(
Forall2
(##))
(
only
parsing
)
:
stdpp_scope
.
Infix
"##**"
:
=
(
Forall2
(##*))
(
at
level
70
)
:
stdpp_scope
.
...
...
@@ -897,17 +901,19 @@ Class DisjointList A := disjoint_list : list A → Prop.
Hint
Mode
DisjointList
!
:
typeclass_instances
.
Instance
:
Params
(@
disjoint_list
)
2
.
Notation
"## Xs"
:
=
(
disjoint_list
Xs
)
(
at
level
20
,
format
"## Xs"
)
:
stdpp_scope
.
Notation
"##@{ A } Xs"
:
=
(@
disjoint_list
A
_
Xs
)
(
at
level
20
,
only
parsing
)
:
stdpp_scope
.
Section
disjoint_list
.
Context
`
{
Disjoint
A
,
Union
A
,
Empty
A
}.
Implicit
Types
X
:
A
.
Inductive
disjoint_list_default
:
DisjointList
A
:
=
|
disjoint_nil_2
:
##
(@
nil
A
)
|
disjoint_nil_2
:
##
@{
A
}
[]
|
disjoint_cons_2
(
X
:
A
)
(
Xs
:
list
A
)
:
X
##
⋃
Xs
→
##
Xs
→
##
(
X
::
Xs
).
Global
Existing
Instance
disjoint_list_default
.
Lemma
disjoint_list_nil
:
##
@
nil
A
↔
True
.
Lemma
disjoint_list_nil
:
##
@{
A
}
[]
↔
True
.
Proof
.
split
;
constructor
.
Qed
.
Lemma
disjoint_list_cons
X
Xs
:
##
(
X
::
Xs
)
↔
X
##
⋃
Xs
∧
##
Xs
.
Proof
.
split
.
inversion_clear
1
;
auto
.
intros
[??].
constructor
;
auto
.
Qed
.
...
...
theories/coPset.v
View file @
10edecb6
...
...
@@ -194,7 +194,7 @@ Instance coPset_elem_of_dec : RelDecision (∈@{coPset}).
Proof
.
solve_decision
.
Defined
.
Instance
coPset_equiv_dec
:
RelDecision
(
≡
@{
coPset
}).
Proof
.
refine
(
λ
X
Y
,
cast_if
(
decide
(
X
=
Y
)))
;
abstract
(
by
fold_leibniz
).
Defined
.
Instance
mapset_disjoint_dec
:
RelDecision
(
@
disjoint
coPset
_
).
Instance
mapset_disjoint_dec
:
RelDecision
(
##@{
coPset
}
).
Proof
.
refine
(
λ
X
Y
,
cast_if
(
decide
(
X
∩
Y
=
∅
)))
;
abstract
(
by
rewrite
disjoint_intersection_L
).
...
...
theories/collections.v
View file @
10edecb6
...
...
@@ -30,7 +30,7 @@ Section setoids_simple.
Proof
.
apply
_
.
Qed
.
Global
Instance
elem_of_proper
:
Proper
((=)
==>
(
≡
)
==>
iff
)
(
∈
@{
C
})
|
5
.
Proof
.
by
intros
x
?
<-
X
Y
.
Qed
.
Global
Instance
disjoint_proper
:
Proper
((
≡
)
==>
(
≡
)
==>
iff
)
(
@
disjoint
C
_
).
Global
Instance
disjoint_proper
:
Proper
((
≡
)
==>
(
≡
)
==>
iff
)
(
##@{
C
}
).
Proof
.
intros
X1
X2
HX
Y1
Y2
HY
;
apply
forall_proper
;
intros
x
.
by
rewrite
HX
,
HY
.
Qed
.
...
...
@@ -407,7 +407,7 @@ Section simple_collection.
Lemma
elem_of_disjoint
X
Y
:
X
##
Y
↔
∀
x
,
x
∈
X
→
x
∈
Y
→
False
.
Proof
.
done
.
Qed
.
Global
Instance
disjoint_sym
:
Symmetric
(
@
disjoint
C
_
).
Global
Instance
disjoint_sym
:
Symmetric
(
##@{
C
}
).
Proof
.
intros
X
Y
.
set_solver
.
Qed
.
Lemma
disjoint_empty_l
Y
:
∅
##
Y
.
Proof
.
set_solver
.
Qed
.
...
...
theories/mapset.v
View file @
10edecb6
...
...
@@ -80,7 +80,7 @@ Section deciders.
Proof
.
refine
(
λ
X1
X2
,
cast_if
(
decide
(
X1
=
X2
)))
;
abstract
(
by
fold_leibniz
).
Defined
.
Global
Instance
mapset_elem_of_dec
:
RelDecision
(
∈
@{
mapset
M
})
|
1
.
Proof
.
refine
(
λ
x
X
,
cast_if
(
decide
(
mapset_car
X
!!
x
=
Some
())))
;
done
.
Defined
.
Global
Instance
mapset_disjoint_dec
:
RelDecision
(
@
disjoint
(
mapset
M
)
_
).
Global
Instance
mapset_disjoint_dec
:
RelDecision
(
##@{
mapset
M
}
).
Proof
.
refine
(
λ
X1
X2
,
cast_if
(
decide
(
X1
∩
X2
=
∅
)))
;
abstract
(
by
rewrite
disjoint_intersection_L
).
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment