Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
stdpp
Commits
10a74299
Commit
10a74299
authored
Aug 04, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Injectivity instance for Z.of_nat.
Also cleanup the file a bit.
parent
099e760b
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
3 deletions
+6
-3
theories/numbers.v
theories/numbers.v
+6
-3
No files found.
theories/numbers.v
View file @
10a74299
...
@@ -231,16 +231,19 @@ Infix "`rem`" := Z.rem (at level 35) : Z_scope.
...
@@ -231,16 +231,19 @@ Infix "`rem`" := Z.rem (at level 35) : Z_scope.
Infix
"≪"
:
=
Z
.
shiftl
(
at
level
35
)
:
Z_scope
.
Infix
"≪"
:
=
Z
.
shiftl
(
at
level
35
)
:
Z_scope
.
Infix
"≫"
:
=
Z
.
shiftr
(
at
level
35
)
:
Z_scope
.
Infix
"≫"
:
=
Z
.
shiftr
(
at
level
35
)
:
Z_scope
.
Instance
:
Inj
(=)
(=)
Zpos
.
Instance
Zpos_inj
:
Inj
(=)
(=)
Zpos
.
Proof
.
by
injection
1
.
Qed
.
Proof
.
by
injection
1
.
Qed
.
Instance
:
Inj
(=)
(=)
Zneg
.
Instance
Zneg_inj
:
Inj
(=)
(=)
Zneg
.
Proof
.
by
injection
1
.
Qed
.
Proof
.
by
injection
1
.
Qed
.
Instance
Z_of_nat_inj
:
Inj
(=)
(=)
Z
.
of_nat
.
Proof
.
intros
n1
n2
.
apply
Nat2Z
.
inj
.
Qed
.
Instance
Z_eq_dec
:
∀
x
y
:
Z
,
Decision
(
x
=
y
)
:
=
Z
.
eq_dec
.
Instance
Z_eq_dec
:
∀
x
y
:
Z
,
Decision
(
x
=
y
)
:
=
Z
.
eq_dec
.
Instance
Z_le_dec
:
∀
x
y
:
Z
,
Decision
(
x
≤
y
)
:
=
Z_le_dec
.
Instance
Z_le_dec
:
∀
x
y
:
Z
,
Decision
(
x
≤
y
)
:
=
Z_le_dec
.
Instance
Z_lt_dec
:
∀
x
y
:
Z
,
Decision
(
x
<
y
)
:
=
Z_lt_dec
.
Instance
Z_lt_dec
:
∀
x
y
:
Z
,
Decision
(
x
<
y
)
:
=
Z_lt_dec
.
Instance
Z_inhabited
:
Inhabited
Z
:
=
populate
1
.
Instance
Z_inhabited
:
Inhabited
Z
:
=
populate
1
.
Instance
:
PartialOrder
(
≤
).
Instance
Z_le_order
:
PartialOrder
(
≤
).
Proof
.
Proof
.
repeat
split
;
red
.
apply
Z
.
le_refl
.
apply
Z
.
le_trans
.
apply
Z
.
le_antisymm
.
repeat
split
;
red
.
apply
Z
.
le_refl
.
apply
Z
.
le_trans
.
apply
Z
.
le_antisymm
.
Qed
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment