Skip to content
Snippets Groups Projects
Commit 0ac2b4db authored by Ralf Jung's avatar Ralf Jung
Browse files

relate Forall2 and Forall

parent aae110fd
Branches
Tags
No related merge requests found
Pipeline #
......@@ -2301,6 +2301,7 @@ Qed.
Lemma Forall_Forall2 {A} (Q : A A Prop) l :
Forall (λ x, Q x x) l Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.
Lemma Forall2_forall `{Inhabited A} B C (Q : A B C Prop) l k :
Forall2 (λ x y, z, Q z x y) l k z, Forall2 (Q z) l k.
Proof.
......@@ -2310,6 +2311,10 @@ Proof.
- apply IH. intros z. by feed inversion (Hlk z).
Qed.
Lemma Forall2_Forall {A} P (l1 l2 : list A) :
Forall2 P l1 l2 Forall (curry P) (zip l1 l2).
Proof. induction 1; constructor; auto. Qed.
Section Forall2.
Context {A B} (P : A B Prop).
Implicit Types x : A.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment