Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
048dc54e
Commit
048dc54e
authored
3 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Add an underscore to `CoPset_` to avoid nameclash with Iris's `algebra.coPset.CoPset`.
parent
8c81e4f8
No related branches found
No related tags found
1 merge request
!309
Use `SProp` to obtain better definitional equality for `pmap`, `gmap`, `gset`, `Qp`, and `coPset`
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/coPset.v
+17
-15
17 additions, 15 deletions
theories/coPset.v
with
17 additions
and
15 deletions
theories/coPset.v
+
17
−
15
View file @
048dc54e
...
...
@@ -161,7 +161,9 @@ Proof.
Qed
.
(** * Packed together + set operations *)
Record
coPset
:=
CoPset
{
(** Add an underscore to [CoPset_] to avoid nameclash with Iris's
[algebra.coPset.CoPset]. *)
Record
coPset
:=
CoPset_
{
coPset_car
:
coPset_raw
;
coPset_prf
:
SIs_true
(
coPset_wf
coPset_car
);
}
.
...
...
@@ -178,20 +180,20 @@ Global Instance coPset_eq_dec : EqDecision coPset := λ X1 X2,
end
.
Global
Instance
coPset_singleton
:
Singleton
positive
coPset
:=
λ
p
,
CoPset
(
coPset_singleton_raw
p
)
(
coPset_singleton_wf
_)
.
CoPset
_
(
coPset_singleton_raw
p
)
(
coPset_singleton_wf
_)
.
Global
Instance
coPset_elem_of
:
ElemOf
positive
coPset
:=
λ
p
X
,
e_of
p
(
coPset_car
X
)
.
Global
Instance
coPset_empty
:
Empty
coPset
:=
CoPset
(
coPLeaf
false
)
stt
.
Global
Instance
coPset_top
:
Top
coPset
:=
CoPset
(
coPLeaf
true
)
stt
.
Global
Instance
coPset_empty
:
Empty
coPset
:=
CoPset
_
(
coPLeaf
false
)
stt
.
Global
Instance
coPset_top
:
Top
coPset
:=
CoPset
_
(
coPLeaf
true
)
stt
.
Global
Instance
coPset_union
:
Union
coPset
:=
λ
'
(
CoPset
t1
Ht1
)
'
(
CoPset
t2
Ht2
),
CoPset
(
t1
∪
t2
)
(
coPset_union_wf
_
_
Ht1
Ht2
)
.
λ
'
(
CoPset
_
t1
Ht1
)
'
(
CoPset
_
t2
Ht2
),
CoPset
_
(
t1
∪
t2
)
(
coPset_union_wf
_
_
Ht1
Ht2
)
.
Global
Instance
coPset_intersection
:
Intersection
coPset
:=
λ
'
(
CoPset
t1
Ht1
)
'
(
CoPset
t2
Ht2
),
CoPset
(
t1
∩
t2
)
(
coPset_intersection_wf
_
_
Ht1
Ht2
)
.
λ
'
(
CoPset
_
t1
Ht1
)
'
(
CoPset
_
t2
Ht2
),
CoPset
_
(
t1
∩
t2
)
(
coPset_intersection_wf
_
_
Ht1
Ht2
)
.
Global
Instance
coPset_difference
:
Difference
coPset
:=
λ
'
(
CoPset
t1
Ht1
)
'
(
CoPset
t2
Ht2
),
CoPset
(
t1
∩
coPset_opp_raw
t2
)
λ
'
(
CoPset
_
t1
Ht1
)
'
(
CoPset
_
t2
Ht2
),
CoPset
_
(
t1
∩
coPset_opp_raw
t2
)
(
coPset_intersection_wf
_
_
Ht1
(
coPset_opp_wf
_))
.
Global
Instance
coPset_top_set
:
TopSet
positive
coPset
.
...
...
@@ -347,7 +349,7 @@ Proof. induction t as [|[[]|]]; simpl; rewrite ?andb_True; auto. Qed.
Definition
Pset_to_coPset
(
X
:
Pset
)
:
coPset
:=
let
'
Mapset
(
PMap
t
Ht
)
:=
X
in
CoPset
(
Pset_to_coPset_raw
t
)
(
Pset_to_coPset_wf
_
Ht
)
.
CoPset
_
(
Pset_to_coPset_raw
t
)
(
Pset_to_coPset_wf
_
Ht
)
.
Lemma
elem_of_Pset_to_coPset
X
i
:
i
∈
Pset_to_coPset
X
↔
i
∈
X
.
Proof
.
destruct
X
as
[[
t
?]];
apply
elem_of_Pset_to_coPset_raw
.
Qed
.
Lemma
Pset_to_coPset_finite
X
:
set_finite
(
Pset_to_coPset
X
)
.
...
...
@@ -364,7 +366,7 @@ Definition coPset_to_gset (X : coPset) : gset positive :=
Definition
gset_to_coPset
(
X
:
gset
positive
)
:
coPset
:=
let
'
Mapset
(
GMap
(
PMap
t
Ht
)
_)
:=
X
in
CoPset
(
Pset_to_coPset_raw
t
)
(
Pset_to_coPset_wf
_
Ht
)
.
CoPset
_
(
Pset_to_coPset_raw
t
)
(
Pset_to_coPset_wf
_
Ht
)
.
Lemma
elem_of_coPset_to_gset
X
i
:
set_finite
X
→
i
∈
coPset_to_gset
X
↔
i
∈
X
.
Proof
.
...
...
@@ -421,7 +423,7 @@ Fixpoint coPset_suffixes_raw (p : positive) : coPset_raw :=
Lemma
coPset_suffixes_wf
p
:
SIs_true
(
coPset_wf
(
coPset_suffixes_raw
p
))
.
Proof
.
apply
SIs_true_intro
.
induction
p
;
simpl
;
eauto
.
Qed
.
Definition
coPset_suffixes
(
p
:
positive
)
:
coPset
:=
CoPset
(
coPset_suffixes_raw
p
)
(
coPset_suffixes_wf
_)
.
CoPset
_
(
coPset_suffixes_raw
p
)
(
coPset_suffixes_wf
_)
.
Lemma
elem_coPset_suffixes
p
q
:
p
∈
coPset_suffixes
q
↔
∃
q'
,
p
=
q'
++
q
.
Proof
.
unfold
elem_of
,
coPset_elem_of
;
simpl
;
split
.
...
...
@@ -454,9 +456,9 @@ Proof. apply SIs_true_intro. induction t as [[]|]; simpl; auto. Qed.
Lemma
coPset_r_wf
t
:
SIs_true
(
coPset_wf
(
coPset_r_raw
t
))
.
Proof
.
apply
SIs_true_intro
.
induction
t
as
[[]|];
simpl
;
auto
.
Qed
.
Definition
coPset_l
(
X
:
coPset
)
:
coPset
:=
let
(
t
,
Ht
)
:=
X
in
CoPset
(
coPset_l_raw
t
)
(
coPset_l_wf
_)
.
let
(
t
,
Ht
)
:=
X
in
CoPset
_
(
coPset_l_raw
t
)
(
coPset_l_wf
_)
.
Definition
coPset_r
(
X
:
coPset
)
:
coPset
:=
let
(
t
,
Ht
)
:=
X
in
CoPset
(
coPset_r_raw
t
)
(
coPset_r_wf
_)
.
let
(
t
,
Ht
)
:=
X
in
CoPset
_
(
coPset_r_raw
t
)
(
coPset_r_wf
_)
.
Lemma
coPset_lr_disjoint
X
:
coPset_l
X
∩
coPset_r
X
=
∅.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment