Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
(** This file is still experimental. See its tracking issue
https://gitlab.mpi-sws.org/iris/stdpp/-/issues/146 for details on remaining
issues before stabilization. This file is maintained by Michael Sammler. *)
From stdpp.unstable Require Export bitvector.
From stdpp.unstable Require Import bitblast.
From stdpp Require Import options.
(** * bitvector tactics *)
(** This file provides tactics for the bitvector library in
[bitvector.v]. In particular, it provides integration of bitvectors
with the [bitblast] tactic and tactics for simplifying and solving
bitvector expressions. The main tactic provided by this library is
[bv_simplify] which performs the following steps:
1. Simplify the goal by rewriting with the [bv_simplify] database.
2. If the goal is an (in)equality (= or ≠) between bitvectors, turn it into
an (in)equality between their unsigned values. (Using unsigned values here
rather than signed is somewhat arbitrary but works well enough in practice.)
3. Unfold [bv_unsigned] and [bv_signed] of operations on [bv n] to
operations on [Z].
4. Simplify the goal by rewriting with the [bv_unfolded_simplify]
database.
This file provides the following variants of the [bv_simplify] tactic:
- [bv_simplify] applies the simplification procedure to the goal.
- [bv_simplify H] applies the simplification procedure to the hypothesis [H].
- [bv_simplify select pat] applies the simplification procedure to the hypothesis
matching [pat].
- [bv_simplify_arith] applies the simplification procedure to the goal and
additionally rewrites with the [bv_unfolded_to_arith] database to turn the goal
into a more suitable shape for calling [lia].
- [bv_simplify_arith H] same as [bv_simplify_arith], but in the hypothesis [H].
- [bv_simplify_arith select pat] same as [bv_simplify_arith], but in the
hypothesis matching [pat].
- [bv_solve] simplifies the goal using [bv_simplify_arith], learns bounds facts
about bitvector variables in the context and tries to solve the goal using [lia].
This automation assumes that [lia] can handle [`mod`] and [`div`] as can be enabled
via the one of the following flags:
Ltac Zify.zify_post_hook ::= Z.to_euclidean_division_equations.
or
Ltac Zify.zify_post_hook ::= Z.div_mod_to_equations.
or
Ltac Zify.zify_convert_to_euclidean_division_equations_flag ::= constr:(true).
See https://coq.github.io/doc/master/refman/addendum/micromega.html#coq:tacn.zify
for details.
*)
(** * Settings *)
Local Open Scope Z_scope.
(** * General tactics *)
Ltac unfold_lets_in_context :=
repeat match goal with
| H := _ |- _ => unfold H in *; clear H
end.
Tactic Notation "reduce_closed" constr(x) :=
is_closed_term x;
let r := eval vm_compute in x in
change_no_check x with r in *
.
(** * bitblast instances *)
Lemma bitblast_bool_to_Z b n:
Bitblast (bool_to_Z b) n (bool_decide (n = 0) && b).
Proof.
constructor. destruct b; simpl_bool; repeat case_bool_decide;
subst; try done; rewrite ?Z.bits_0; by destruct n.
Qed.
Global Hint Resolve bitblast_bool_to_Z | 10 : bitblast.
Lemma bitblast_bounded_bv_unsigned n (b : bv n):
BitblastBounded (bv_unsigned b) (Z.of_N n).
Proof. constructor. apply bv_unsigned_in_range. Qed.
Global Hint Resolve bitblast_bounded_bv_unsigned | 15 : bitblast.
Lemma bitblast_bv_wrap z1 n n1 b1:
Bitblast z1 n b1 →
Bitblast (bv_wrap n1 z1) n (bool_decide (n < Z.of_N n1) && b1).
Proof.
intros [<-]. constructor.
destruct (decide (0 ≤ n)); [by rewrite bv_wrap_spec| rewrite !Z.testbit_neg_r; [|lia..]; btauto].
Qed.
Global Hint Resolve bitblast_bv_wrap | 10 : bitblast.
(* The following two lemmas are proven using [bitblast]. *)
Lemma bv_extract_concat_later m n1 n2 s l (b1 : bv n1) (b2 : bv n2):
(n2 ≤ s)%N →
(m = n1 + n2)%N →
bv_extract s l (bv_concat m b1 b2) = bv_extract (s - n2) l b1.
Proof.
intros ? ->. apply bv_eq.
rewrite !bv_extract_unsigned, bv_concat_unsigned, !bv_wrap_land by done.
bitblast. f_equal. lia.
Qed.
Lemma bv_extract_concat_here m n1 n2 s (b1 : bv n1) (b2 : bv n2):
s = 0%N →
(m = n1 + n2)%N →
bv_extract s n2 (bv_concat m b1 b2) = b2.
Proof.
intros -> ->. apply bv_eq.
rewrite !bv_extract_unsigned, bv_concat_unsigned, !bv_wrap_land by done.
bitblast. f_equal. lia.
Qed.
(** * [bv_simplify] rewrite database *)
(** The [bv_simplify] database collects rewrite rules that rewrite
bitvectors into other bitvectors. *)
Create HintDb bv_simplify discriminated. (* Technically not necessary for rewrite db. *)
Hint Rewrite @bv_concat_0 using done : bv_simplify.
Hint Rewrite @bv_extract_concat_later @bv_extract_concat_here using lia : bv_simplify.
Hint Rewrite @bv_extract_bool_to_bv using lia : bv_simplify.
Hint Rewrite @bv_not_bool_to_bv : bv_simplify.
Hint Rewrite bool_decide_bool_to_bv_0 bool_decide_bool_to_bv_1 : bv_simplify.
(** * [bv_unfold] *)
Create HintDb bv_unfold_db discriminated.
Global Hint Constants Opaque : bv_unfold_db.
Global Hint Variables Opaque : bv_unfold_db.
Global Hint Extern 1 (TCFastDone ?P) => (change P; fast_done) : bv_unfold_db.
Global Hint Transparent BvWf andb Is_true Z.ltb Z.leb Z.compare Pos.compare
Pos.compare_cont bv_modulus Z.pow Z.pow_pos Pos.iter Z.mul Pos.mul Z.of_N
: bv_unfold_db.
Notation bv_suwrap signed := (if signed then bv_swrap else bv_wrap).
Class BvUnfold (n : N) (signed : bool) (wrapped : bool) (b : bv n) (z : Z) := {
bv_unfold_proof : ((if signed then bv_signed else bv_unsigned) b) =
(if wrapped then bv_suwrap signed n z else z);
}.
Global Arguments bv_unfold_proof {_ _ _} _ _ {_}.
Global Hint Mode BvUnfold + + + + - : bv_unfold_db.
(** [BV_UNFOLD_BLOCK] is a marker that this occurence of [bv_signed]
or [bv_unsigned] has already been simplified. *)
Definition BV_UNFOLD_BLOCK {A} (x : A) : A := x.
Lemma bv_unfold_end s w n b :
BvUnfold n s w b ((if s then BV_UNFOLD_BLOCK bv_signed else BV_UNFOLD_BLOCK bv_unsigned) b).
Proof.
constructor. unfold BV_UNFOLD_BLOCK.
destruct w, s; by rewrite ?bv_wrap_bv_unsigned, ?bv_swrap_bv_signed.
Qed.
Global Hint Resolve bv_unfold_end | 1000 : bv_unfold_db.
Lemma bv_unfold_BV s w n z Hwf :
BvUnfold n s w (@BV _ z Hwf) (if w then z else if s then bv_swrap n z else z).
Proof.
constructor. unfold bv_unsigned.
destruct w, s; simpl; try done; by rewrite bv_wrap_small by by apply bv_wf_in_range.
Qed.
Global Hint Resolve bv_unfold_BV | 10 : bv_unfold_db.
Lemma bv_unfold_bv_0 s w n :
BvUnfold n s w (bv_0 n) 0.
Proof. constructor. destruct w, s; rewrite ?bv_0_signed, ?bv_0_unsigned, ?bv_swrap_0; done. Qed.
Global Hint Resolve bv_unfold_bv_0 | 10 : bv_unfold_db.
Lemma bv_unfold_Z_to_bv s w n z :
BvUnfold n s w (Z_to_bv _ z) (if w then z else bv_suwrap s n z).
Proof. constructor. destruct w, s; rewrite ?Z_to_bv_signed, ?Z_to_bv_unsigned; done. Qed.
Global Hint Resolve bv_unfold_Z_to_bv | 10 : bv_unfold_db.
Lemma bv_unfold_succ s w n b z :
BvUnfold n s true b z →
BvUnfold n s w (bv_succ b) (if w then Z.succ z else bv_suwrap s n (Z.succ z)).
Proof.
intros [Hz]. constructor.
destruct w, s; rewrite ?bv_succ_signed, ?bv_succ_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_succ | 10 : bv_unfold_db.
Lemma bv_unfold_pred s w n b z :
BvUnfold n s true b z →
BvUnfold n s w (bv_pred b) (if w then Z.pred z else bv_suwrap s n (Z.pred z)).
Proof.
intros [Hz]. constructor.
destruct w, s; rewrite ?bv_pred_signed, ?bv_pred_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_pred | 10 : bv_unfold_db.
Lemma bv_unfold_add s w n b1 b2 z1 z2 :
BvUnfold n s true b1 z1 →
BvUnfold n s true b2 z2 →
BvUnfold n s w (bv_add b1 b2) (if w then z1 + z2 else bv_suwrap s n (z1 + z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_add_signed, ?bv_add_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_add | 10 : bv_unfold_db.
Lemma bv_unfold_sub s w n b1 b2 z1 z2 :
BvUnfold n s true b1 z1 →
BvUnfold n s true b2 z2 →
BvUnfold n s w (bv_sub b1 b2) (if w then z1 - z2 else bv_suwrap s n (z1 - z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_sub_signed, ?bv_sub_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_sub | 10 : bv_unfold_db.
Lemma bv_unfold_opp s w n b z :
BvUnfold n s true b z →
BvUnfold n s w (bv_opp b) (if w then - z else bv_suwrap s n (- z)).
Proof.
intros [Hz]. constructor.
destruct w, s; rewrite ?bv_opp_signed, ?bv_opp_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_opp | 10 : bv_unfold_db.
Lemma bv_unfold_mul s w n b1 b2 z1 z2 :
BvUnfold n s true b1 z1 →
BvUnfold n s true b2 z2 →
BvUnfold n s w (bv_mul b1 b2) (if w then z1 * z2 else bv_suwrap s n (z1 * z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_mul_signed, ?bv_mul_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_mul | 10 : bv_unfold_db.
Lemma bv_unfold_divu s w n b1 b2 z1 z2 :
BvUnfold n false false b1 z1 →
BvUnfold n false false b2 z2 →
BvUnfold n s w (bv_divu b1 b2) (if w then z1 `div` z2 else if s then bv_swrap n (z1 `div` z2) else z1 `div` z2).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_divu_signed, ?bv_divu_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
- pose proof (bv_unsigned_in_range _ (bv_divu b1 b2)) as Hr. rewrite bv_divu_unsigned in Hr. subst.
by rewrite bv_wrap_small.
- done.
Qed.
Global Hint Resolve bv_unfold_divu | 10 : bv_unfold_db.
Lemma bv_unfold_modu s w n b1 b2 z1 z2 :
BvUnfold n false false b1 z1 →
BvUnfold n false false b2 z2 →
BvUnfold n s w (bv_modu b1 b2) (if w then z1 `mod` z2 else if s then bv_swrap n (z1 `mod` z2) else z1 `mod` z2).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_modu_signed, ?bv_modu_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
- pose proof (bv_unsigned_in_range _ (bv_modu b1 b2)) as Hr. rewrite bv_modu_unsigned in Hr. subst.
by rewrite bv_wrap_small.
- done.
Qed.
Global Hint Resolve bv_unfold_modu | 10 : bv_unfold_db.
Lemma bv_unfold_divs s w n b1 b2 z1 z2 :
BvUnfold n true false b1 z1 →
BvUnfold n true false b2 z2 →
BvUnfold n s w (bv_divs b1 b2) (if w then z1 `div` z2 else bv_suwrap s n (z1 `div` z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_divs_signed, ?bv_divs_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_divs | 10 : bv_unfold_db.
Lemma bv_unfold_quots s w n b1 b2 z1 z2 :
BvUnfold n true false b1 z1 →
BvUnfold n true false b2 z2 →
BvUnfold n s w (bv_quots b1 b2) (if w then z1 `quot` z2 else bv_suwrap s n (z1 `quot` z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_quots_signed, ?bv_quots_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_quots | 10 : bv_unfold_db.
Lemma bv_unfold_mods s w n b1 b2 z1 z2 :
BvUnfold n true false b1 z1 →
BvUnfold n true false b2 z2 →
BvUnfold n s w (bv_mods b1 b2) (if w then z1 `mod` z2 else bv_suwrap s n (z1 `mod` z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_mods_signed, ?bv_mods_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_mods | 10 : bv_unfold_db.
Lemma bv_unfold_rems s w n b1 b2 z1 z2 :
BvUnfold n true false b1 z1 →
BvUnfold n true false b2 z2 →
BvUnfold n s w (bv_rems b1 b2) (if w then z1 `rem` z2 else bv_suwrap s n (z1 `rem` z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_rems_signed, ?bv_rems_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_rems | 10 : bv_unfold_db.
Lemma bv_unfold_shiftl s w n b1 b2 z1 z2 :
BvUnfold n false false b1 z1 →
BvUnfold n false false b2 z2 →
BvUnfold n s w (bv_shiftl b1 b2) (if w then z1 ≪ z2 else bv_suwrap s n (z1 ≪ z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_shiftl_signed, ?bv_shiftl_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_shiftl | 10 : bv_unfold_db.
Lemma bv_unfold_shiftr s w n b1 b2 z1 z2 :
BvUnfold n false false b1 z1 →
BvUnfold n false false b2 z2 →
BvUnfold n s w (bv_shiftr b1 b2) (if w then z1 ≫ z2 else if s then bv_swrap n (z1 ≫ z2) else (z1 ≫ z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_shiftr_signed, ?bv_shiftr_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
- pose proof (bv_unsigned_in_range _ (bv_shiftr b1 b2)) as Hr. rewrite bv_shiftr_unsigned in Hr. subst.
by rewrite bv_wrap_small.
- done.
Qed.
Global Hint Resolve bv_unfold_shiftr | 10 : bv_unfold_db.
Lemma bv_unfold_ashiftr s w n b1 b2 z1 z2 :
BvUnfold n true false b1 z1 →
BvUnfold n false false b2 z2 →
BvUnfold n s w (bv_ashiftr b1 b2) (if w then z1 ≫ z2 else bv_suwrap s n (z1 ≫ z2)).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_ashiftr_signed, ?bv_ashiftr_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_ashiftr | 10 : bv_unfold_db.
Lemma bv_unfold_or s w n b1 b2 z1 z2 :
BvUnfold n false false b1 z1 →
BvUnfold n false false b2 z2 →
BvUnfold n s w (bv_or b1 b2) (if w then Z.lor z1 z2 else if s then bv_swrap n (Z.lor z1 z2) else Z.lor z1 z2).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_or_signed, ?bv_or_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
- pose proof (bv_unsigned_in_range _ (bv_or b1 b2)) as Hr. rewrite bv_or_unsigned in Hr. subst.
by rewrite bv_wrap_small.
- done.
Qed.
Global Hint Resolve bv_unfold_or | 10 : bv_unfold_db.
Lemma bv_unfold_and s w n b1 b2 z1 z2 :
BvUnfold n false false b1 z1 →
BvUnfold n false false b2 z2 →
BvUnfold n s w (bv_and b1 b2) (if w then Z.land z1 z2 else if s then bv_swrap n (Z.land z1 z2) else Z.land z1 z2).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_and_signed, ?bv_and_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
- pose proof (bv_unsigned_in_range _ (bv_and b1 b2)) as Hr. rewrite bv_and_unsigned in Hr. subst.
by rewrite bv_wrap_small.
- done.
Qed.
Global Hint Resolve bv_unfold_and | 10 : bv_unfold_db.
Lemma bv_unfold_xor s w n b1 b2 z1 z2 :
BvUnfold n false false b1 z1 →
BvUnfold n false false b2 z2 →
BvUnfold n s w (bv_xor b1 b2) (if w then Z.lxor z1 z2 else if s then bv_swrap n (Z.lxor z1 z2) else Z.lxor z1 z2).
Proof.
intros [Hz1] [Hz2]. constructor.
destruct w, s; rewrite ?bv_xor_signed, ?bv_xor_unsigned, ?Hz1, ?Hz2; try bv_wrap_simplify_solve.
- pose proof (bv_unsigned_in_range _ (bv_xor b1 b2)) as Hr. rewrite bv_xor_unsigned in Hr. subst.
by rewrite bv_wrap_small.
- done.
Qed.
Global Hint Resolve bv_unfold_xor | 10 : bv_unfold_db.
Lemma bv_unfold_not s w n b z :
BvUnfold n false false b z →
BvUnfold n s w (bv_not b) (if w then Z.lnot z else bv_suwrap s n (Z.lnot z)).
Proof.
intros [Hz]. constructor.
destruct w, s; rewrite ?bv_not_signed, ?bv_not_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_not | 10 : bv_unfold_db.
Lemma bv_unfold_zero_extend s w n n' b z `{!TCFastDone (n' <=? n = true)%N} :
BvUnfold n' false false b z →
BvUnfold n s w (bv_zero_extend n b) (if w then z else if s then bv_swrap n z else z).
Proof.
intros [Hz]. constructor. unfold TCFastDone in *. rewrite ->?N.leb_le in *.
destruct w, s; rewrite ?bv_zero_extend_signed, ?bv_zero_extend_unsigned, ?Hz by done;
try bv_wrap_simplify_solve.
- rewrite <-Hz, bv_wrap_small; [done|]. bv_saturate. pose proof (bv_modulus_le_mono n' n). lia.
- done.
Qed.
Global Hint Resolve bv_unfold_zero_extend | 10 : bv_unfold_db.
Lemma bv_unfold_sign_extend s w n n' b z `{!TCFastDone (n' <=? n = true)%N} :
BvUnfold n' true false b z →
BvUnfold n s w (bv_sign_extend n b) (if w then z else if s then z else bv_wrap n z).
Proof.
intros [Hz]. constructor. unfold TCFastDone in *. rewrite ->?N.leb_le in *.
destruct w, s; rewrite ?bv_sign_extend_signed, ?bv_sign_extend_unsigned, ?Hz by done;
try bv_wrap_simplify_solve.
- subst. rewrite <-(bv_sign_extend_signed n) at 2 by done. by rewrite bv_swrap_bv_signed, bv_sign_extend_signed.
- done.
Qed.
Global Hint Resolve bv_unfold_sign_extend | 10 : bv_unfold_db.
Lemma bv_unfold_extract s w n n' n1 b z :
BvUnfold n' false false b z →
BvUnfold n s w (bv_extract n1 n b) (if w then z ≫ Z.of_N n1 else bv_suwrap s n (z ≫ Z.of_N n1)).
Proof.
intros [Hz]. constructor.
destruct w, s; rewrite ?bv_extract_signed, ?bv_extract_unsigned, ?Hz; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_extract | 10 : bv_unfold_db.
Lemma bv_unfold_concat s w n n1 n2 b1 b2 z1 z2 `{!TCFastDone (n = n1 + n2)%N} :
BvUnfold n1 false false b1 z1 →
BvUnfold n2 false false b2 z2 →
BvUnfold n s w (bv_concat n b1 b2) (if w then Z.lor (z1 ≪ Z.of_N n2) z2 else if s then bv_swrap n (Z.lor (z1 ≪ Z.of_N n2) z2) else Z.lor (z1 ≪ Z.of_N n2) z2).
Proof.
intros [Hz1] [Hz2]. constructor. unfold TCFastDone in *.
destruct w, s; rewrite ?bv_concat_signed, ?bv_concat_unsigned, ?Hz1, ?Hz2 by done;
try bv_wrap_simplify_solve.
- subst. rewrite <-(bv_concat_unsigned (n1 + n2)) at 2 by done.
by rewrite bv_wrap_bv_unsigned, bv_concat_unsigned.
- done.
Qed.
Global Hint Resolve bv_unfold_concat | 10 : bv_unfold_db.
Lemma bv_unfold_add_Z s w n b1 z1 z2 :
BvUnfold n s true b1 z1 →
BvUnfold n s w (bv_add_Z b1 z2) (if w then z1 + z2 else bv_suwrap s n (z1 + z2)).
Proof.
intros [Hz1]. constructor.
destruct w, s; rewrite ?bv_add_Z_signed, ?bv_add_Z_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_add_Z | 10 : bv_unfold_db.
Lemma bv_unfold_sub_Z s w n b1 z1 z2 :
BvUnfold n s true b1 z1 →
BvUnfold n s w (bv_sub_Z b1 z2) (if w then z1 - z2 else bv_suwrap s n (z1 - z2)).
Proof.
intros [Hz1]. constructor.
destruct w, s; rewrite ?bv_sub_Z_signed, ?bv_sub_Z_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_sub_Z | 10 : bv_unfold_db.
Lemma bv_unfold_mul_Z s w n b1 z1 z2 :
BvUnfold n s true b1 z1 →
BvUnfold n s w (bv_mul_Z b1 z2) (if w then z1 * z2 else bv_suwrap s n (z1 * z2)).
Proof.
intros [Hz1]. constructor.
destruct w, s; rewrite ?bv_mul_Z_signed, ?bv_mul_Z_unsigned, ?Hz1, ?Hz2; bv_wrap_simplify_solve.
Qed.
Global Hint Resolve bv_unfold_mul_Z | 10 : bv_unfold_db.
Ltac bv_unfold_eq :=
lazymatch goal with
| |- @bv_unsigned ?n ?b = ?z =>
simple notypeclasses refine (@bv_unfold_proof n false false b z _)
| |- @bv_signed ?n ?b = ?z =>
simple notypeclasses refine (@bv_unfold_proof n true false b z _)
end;
typeclasses eauto with bv_unfold_db.
Ltac bv_unfold :=
repeat (match goal with
(* TODO: Detect if there is a bv_wrap around the
bv_unsigned (like after applying bv_eq_wrapped) *)
| |- context [@bv_unsigned ?n ?b] =>
pattern (@bv_unsigned n b);
simple refine (eq_rec_r _ _ _); [shelve| |bv_unfold_eq]; cbn beta
| |- context [@bv_signed ?n ?b] =>
pattern (@bv_signed n b);
simple refine (eq_rec_r _ _ _); [shelve| |bv_unfold_eq]; cbn beta
end); unfold BV_UNFOLD_BLOCK.
(** * [bv_unfolded_simplify] rewrite database *)
(** The [bv_unfolded_simplify] database collects rewrite rules that
should be used to simplify the goal after Z is bv_unfolded. *)
Create HintDb bv_unfolded_simplify discriminated. (* Technically not necessary for rewrite db. *)
Hint Rewrite Z.shiftr_0_r Z.lor_0_r Z.lor_0_l : bv_unfolded_simplify.
Hint Rewrite Z.land_ones using lia : bv_unfolded_simplify.
Hint Rewrite bv_wrap_bv_wrap using lia : bv_unfolded_simplify.
Hint Rewrite Z_to_bv_small using unfold bv_modulus; lia : bv_unfolded_simplify.
(** * [bv_unfolded_to_arith] rewrite database *)
(** The [bv_unfolded_to_arith] database collects rewrite rules that
convert bitwise operations to arithmetic operations in preparation for lia. *)
Create HintDb bv_unfolded_to_arith discriminated. (* Technically not necessary for rewrite db. *)
Hint Rewrite <-Z.opp_lnot : bv_unfolded_to_arith.
Hint Rewrite Z.shiftl_mul_pow2 Z.shiftr_div_pow2 using lia : bv_unfolded_to_arith.
(** * Reduction of closed terms *)
Ltac reduce_closed_N_tac := idtac.
Ltac reduce_closed_N :=
idtac;
reduce_closed_N_tac;
repeat match goal with
| |- context [N.add ?a ?b] => progress reduce_closed (N.add a b)
| H : context [N.add ?a ?b] |- _ => progress reduce_closed (N.add a b)
end.
Ltac reduce_closed_bv_simplify_tac := idtac.
Ltac reduce_closed_bv_simplify :=
idtac;
reduce_closed_bv_simplify_tac;
(* reduce closed logical operators that lia does not understand *)
repeat match goal with
| |- context [Z.lor ?a ?b] => progress reduce_closed (Z.lor a b)
| H : context [Z.lor ?a ?b] |- _ => progress reduce_closed (Z.lor a b)
| |- context [Z.land ?a ?b] => progress reduce_closed (Z.land a b)
| H : context [Z.land ?a ?b] |- _ => progress reduce_closed (Z.land a b)
| |- context [Z.lxor ?a ?b] => progress reduce_closed (Z.lxor a b)
| H : context [Z.lxor ?a ?b] |- _ => progress reduce_closed (Z.lxor a b)
end.
(** * [bv_simplify] tactic *)
Tactic Notation "bv_simplify" :=
unfold_lets_in_context;
(* We need to reduce operations on N in indices of bv because
otherwise lia can get confused (it does not perform unification when
finding identical subterms). This sometimes leads to problems
with length of lists of bytes. *)
reduce_closed_N;
autorewrite with bv_simplify;
first [apply bv_eq_wrap | apply bv_neq_wrap | idtac];
bv_unfold;
autorewrite with bv_unfolded_simplify.
Tactic Notation "bv_simplify" ident(H) :=
unfold_lets_in_context;
autorewrite with bv_simplify in H;
first [ apply bv_eq in H | apply bv_neq in H | idtac ];
tactic bv_unfold in H;
autorewrite with bv_unfolded_simplify in H.
Tactic Notation "bv_simplify" "select" open_constr(pat) :=
select pat (fun H => bv_simplify H).
Tactic Notation "bv_simplify_arith" :=
bv_simplify;
autorewrite with bv_unfolded_to_arith;
reduce_closed_bv_simplify.
Tactic Notation "bv_simplify_arith" ident(H) :=
bv_simplify H;
autorewrite with bv_unfolded_to_arith in H;
reduce_closed_bv_simplify.
Tactic Notation "bv_simplify_arith" "select" open_constr(pat) :=
select pat (fun H => bv_simplify_arith H).
(** * [bv_solve] tactic *)
Ltac bv_solve_unfold_tac := idtac.
Ltac bv_solve :=
bv_simplify_arith;
(* we unfold signed so we just need to saturate unsigned *)
bv_saturate_unsigned;
bv_solve_unfold_tac;
unfold bv_signed, bv_swrap, bv_wrap, bv_half_modulus, bv_modulus, bv_unsigned in *;
simpl;
lia.
Class BvSolve (P : Prop) : Prop := bv_solve_proof : P.
Global Hint Extern 1 (BvSolve ?P) => (change P; bv_solve) : typeclass_instances.