Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
simuliris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
simuliris
Commits
00ed7ba6
Commit
00ed7ba6
authored
1 year ago
by
Irene Yoon
Browse files
Options
Downloads
Patches
Plain Diff
Heapbij util lemmas prog
parent
c8fea692
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/vir/heapbij.v
+161
-10
161 additions, 10 deletions
theories/vir/heapbij.v
with
161 additions
and
10 deletions
theories/vir/heapbij.v
+
161
−
10
View file @
00ed7ba6
...
...
@@ -197,8 +197,61 @@ Section definitions.
Definition
target_bij_set
(
L
:
gset
(
loc
*
loc
))
:
gset
loc
:=
gset_fmap
fst
L
.
Lemma
dom_mapset_car
{
X
}
`{
!
EqDecision
X
}
`{
!
Countable
X
}
A
:
(
dom
A
:
gset
X
)
=
{|
mapset_car
:=
A
|}
.
Proof
.
induction
A
as
[|
y
Y
not_in
IH
]
using
map_ind
.
-
rewrite
dom_empty_L
.
done
.
-
rewrite
dom_insert_L
.
rewrite
insert_union_singleton_l
.
rewrite
IHA
.
destruct
Y
;
cbn
.
done
.
Qed
.
Lemma
mapset_car_insert_union_singleton_l
{
X
}
`{
!
EqDecision
X
}
`{
!
Countable
X
}
y
(
A
:
gset
X
):
mapset_car
({[
y
]}
∪
A
)
=
<
[
y
:=
()
]
>
(
mapset_car
A
)
.
Proof
.
destruct
A
as
[
mX
]
.
simpl
.
by
rewrite
insert_union_singleton_l
.
Qed
.
Lemma
insert_gset_fmap_fst
:
∀
(
l_t
l_s
:
loc
)
(
X
:
gset
(
loc
*
loc
)),
(
l_t
,
l_s
)
∉
X
→
(
λ
'
(
a
,
b
),
(
a
.
1
,
b
))
<$>
map_to_list
(
<
[(
l_t
,
l_s
):=()]
>
(
mapset_car
X
))
≡
ₚ
(
l_t
,
())
::
((
λ
'
(
a
,
b
),
(
a
.
1
,
b
))
<$>
map_to_list
(
mapset_car
X
))
.
Proof
.
intros
l_t
l_s
X
not_in
.
rewrite
map_to_list_insert
;
cbn
;
cycle
1
.
{
destruct
X
.
rewrite
-
dom_mapset_car
in
not_in
.
apply
not_elem_of_dom_1
in
not_in
.
by
cbn
.
}
reflexivity
.
Qed
.
Lemma
insert_gset_fmap_snd
:
∀
(
l_t
l_s
:
loc
)
(
X
:
gset
(
loc
*
loc
)),
(
l_t
,
l_s
)
∉
X
→
(
λ
'
(
a
,
b
),
(
a
.
2
,
b
))
<$>
map_to_list
(
<
[(
l_t
,
l_s
):=()]
>
(
mapset_car
X
))
≡
ₚ
(
l_s
,
())
::
((
λ
'
(
a
,
b
),
(
a
.
2
,
b
))
<$>
map_to_list
(
mapset_car
X
))
.
Proof
.
intros
l_t
l_s
X
not_in
.
rewrite
map_to_list_insert
;
cbn
;
cycle
1
.
{
destruct
X
.
rewrite
-
dom_mapset_car
in
not_in
.
apply
not_elem_of_dom_1
in
not_in
.
by
cbn
.
}
reflexivity
.
Qed
.
Instance
list_to_map_permute
`{
!
Insert
K
A
M
}
`{
!
Empty
M
}:
Proper
(
Permutation
==>
eq
)
(
@
list_to_map
K
A
M
_
_)
.
Proof
.
repeat
intro
.
revert
y
H
.
induction
x
;
intros
;
cbn
.
{
apply
Permutation_nil
in
H
;
by
subst
.
}
Admitted
.
Lemma
target_bij_set_union
l_t
l_s
L
:
target_bij_set
({[(
l_t
,
l_s
)]}
∪
L
)
=
{[
l_t
]}
∪
target_bij_set
L
.
target_bij_set
({[(
l_t
,
l_s
)]}
∪
L
)
≡
{[
l_t
]}
∪
target_bij_set
L
.
Proof
.
induction
L
as
[|
y
X
not_in
IH
]
using
set_ind_L
.
-
rewrite
union_empty_r_L
.
...
...
@@ -211,19 +264,117 @@ Section definitions.
rewrite
(
union_comm_L
({[(
l_t
,
l_s
)]}))
.
rewrite
-
union_assoc_L
.
rewrite
{
1
}
/
target_bij_set
/
gset_fmap
;
cbn
.
rewrite
!
mapset_car_insert_union_singleton_l
.
destruct
(
decide
(
y
=
(
l_t
,
l_s
)))
.
{
subst
.
rewrite
insert_insert
.
pose
proof
(
insert_gset_fmap_fst
_
_
_
not_in
)
.
pose
proof
(
list_to_map_permute
(
M
:=
gmap
_
_)
_
_
H
)
.
rewrite
H0
;
cbn
;
clear
H0
.
rewrite
insert_union_singleton_l
.
rewrite
subseteq_union_1_L
.
{
symmetry
.
etransitivity
.
-
apply
IH
.
-
reflexivity
.
}
rewrite
/
target_bij_set
/
gset_fmap
.
rewrite
mapset_car_insert_union_singleton_l
.
pose
proof
(
list_to_map_permute
(
M
:=
gmap
_
_)
_
_
H
)
.
rewrite
H0
;
clear
H0
.
cbn
.
rewrite
insert_union_singleton_l
.
etransitivity
.
{
eapply
union_subseteq_l
.
}
Unshelve
.
2
:
exact
{|
mapset_car
:=
list_to_map
((
λ
'
(
a
,
b
),
(
a
.
1
,
b
))
<$>
map_to_list
(
mapset_car
X
))
|}
.
set_solver
.
}
assert
(
mapset_car
({[
y
]}
∪
({[(
l_t
,
l_s
)]}
∪
X
))
=
<
[
y
:=
()
]
>
(
mapset_car
({[(
l_t
,
l_s
)]}
∪
X
)))
.
{
destruct
X
as
[
mX
]
.
simpl
.
by
rewrite
insert_union_singleton_l
.
}
rewrite
H
;
clear
H
.
pose
proof
(
map_to_list_insert
(
mapset_car
({[(
l_t
,
l_s
)]}
∪
X
))
y
tt
)
.
Admitted
.
{
rewrite
-
mapset_car_insert_union_singleton_l
.
assert
(
y
∉
({[(
l_t
,
l_s
)]}
∪
X
))
.
{
set_solver
.
}
pose
proof
(
insert_gset_fmap_fst
_
_
_
H
)
.
pose
proof
(
list_to_map_permute
(
M
:=
gmap
_
_)
_
_
H0
)
.
destruct
y
.
cbn
in
*.
rewrite
H1
;
cbn
;
clear
H1
.
rewrite
insert_union_singleton_l
.
change
({|
mapset_car
:=
{[
l
:=
()]}
∪
list_to_map
((
λ
'
(
a
,
b
),
(
a
.
1
,
b
))
<$>
map_to_list
(
mapset_car
({[(
l_t
,
l_s
)]}
∪
X
)))
|})
with
({[
l
]}
∪
target_bij_set
({[
(
l_t
,
l_s
)
]}
∪
X
))
.
rewrite
IH
;
clear
IH
H0
.
rewrite
{
2
}
/
target_bij_set
/
gset_fmap
.
rewrite
mapset_car_insert_union_singleton_l
.
pose
proof
(
insert_gset_fmap_fst
_
_
_
not_in
)
.
pose
proof
(
list_to_map_permute
(
M
:=
gmap
_
_)
_
_
H0
)
.
rewrite
H1
;
cbn
;
clear
H1
.
rewrite
insert_union_singleton_l
.
change
{|
mapset_car
:=
{[
l
:=
()]}
∪
list_to_map
((
λ
'
(
a
,
b
),
(
a
.
1
,
b
))
<$>
map_to_list
(
mapset_car
X
))
|}
with
({[
l
]}
∪
target_bij_set
X
)
.
set_solver
.
}
Qed
.
Lemma
source_bij_set_union
l_t
l_s
L
:
source_bij_set
({[(
l_t
,
l_s
)]}
∪
L
)
=
{[
l_s
]}
∪
source_bij_set
L
.
Proof
.
Admitted
.
(* Utility *)
Proof
.
induction
L
as
[|
y
X
not_in
IH
]
using
set_ind_L
.
-
rewrite
union_empty_r_L
.
rewrite
/
source_bij_set
/
gset_fmap
;
cbn
.
rewrite
map_to_list_empty
;
cbn
.
rewrite
union_empty_r_L
.
rewrite
map_to_list_singleton
;
cbn
.
rewrite
insert_empty
;
reflexivity
.
-
rewrite
union_assoc_L
.
rewrite
(
union_comm_L
({[(
l_t
,
l_s
)]}))
.
rewrite
-
union_assoc_L
.
rewrite
{
1
}
/
source_bij_set
/
gset_fmap
;
cbn
.
rewrite
!
mapset_car_insert_union_singleton_l
.
destruct
(
decide
(
y
=
(
l_t
,
l_s
)))
.
{
subst
.
rewrite
insert_insert
.
pose
proof
(
insert_gset_fmap_snd
_
_
_
not_in
)
.
pose
proof
(
list_to_map_permute
(
M
:=
gmap
_
_)
_
_
H
)
.
rewrite
H0
;
cbn
;
clear
H0
.
rewrite
insert_union_singleton_l
.
rewrite
subseteq_union_1_L
.
{
symmetry
.
etransitivity
.
-
apply
IH
.
-
reflexivity
.
}
rewrite
/
source_bij_set
/
gset_fmap
.
rewrite
mapset_car_insert_union_singleton_l
.
pose
proof
(
list_to_map_permute
(
M
:=
gmap
_
_)
_
_
H
)
.
rewrite
H0
;
clear
H0
.
cbn
.
rewrite
insert_union_singleton_l
.
etransitivity
.
{
eapply
union_subseteq_l
.
}
Unshelve
.
2
:
exact
{|
mapset_car
:=
list_to_map
((
λ
'
(
a
,
b
),
(
a
.
2
,
b
))
<$>
map_to_list
(
mapset_car
X
))
|}
.
set_solver
.
}
{
rewrite
-
mapset_car_insert_union_singleton_l
.
assert
(
y
∉
({[(
l_t
,
l_s
)]}
∪
X
))
.
{
set_solver
.
}
pose
proof
(
insert_gset_fmap_snd
_
_
_
H
)
.
pose
proof
(
list_to_map_permute
(
M
:=
gmap
_
_)
_
_
H0
)
.
destruct
y
.
cbn
in
*.
rewrite
H1
;
cbn
;
clear
H1
.
rewrite
insert_union_singleton_l
.
change
({|
mapset_car
:=
{[
l0
:=
()]}
∪
list_to_map
((
λ
'
(
a
,
b
),
(
a
.
2
,
b
))
<$>
map_to_list
(
mapset_car
({[(
l_t
,
l_s
)]}
∪
X
)))
|})
with
({[
l0
]}
∪
source_bij_set
({[
(
l_t
,
l_s
)
]}
∪
X
))
.
rewrite
IH
;
clear
IH
H0
.
rewrite
{
2
}
/
source_bij_set
/
gset_fmap
.
rewrite
mapset_car_insert_union_singleton_l
.
pose
proof
(
insert_gset_fmap_snd
_
_
_
not_in
)
.
pose
proof
(
list_to_map_permute
(
M
:=
gmap
_
_)
_
_
H0
)
.
rewrite
H1
;
cbn
;
clear
H1
.
rewrite
insert_union_singleton_l
.
change
{|
mapset_car
:=
{[
l0
:=
()]}
∪
list_to_map
((
λ
'
(
a
,
b
),
(
a
.
2
,
b
))
<$>
map_to_list
(
mapset_car
X
))
|}
with
({[
l0
]}
∪
source_bij_set
X
)
.
set_solver
.
}
Qed
.
Lemma
alloc_rel_read_None
C
b_t
b_s
σ_s
σ_t
v
G
mf
L
LS
B
:
σ_s
!!
b_s
=
Some
v
→
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment