Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
ReLoC
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
ReLoC
Commits
fbb9a9d5
Commit
fbb9a9d5
authored
4 years ago
by
Dan Frumin
Browse files
Options
Downloads
Patches
Plain Diff
Alternative def. of ctx ref
parent
54ebef8d
No related branches found
Branches containing commit
No related tags found
1 merge request
!5
Alternative definition of contextual refinement
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/typing/contextual_refinement.v
+86
-1
86 additions, 1 deletion
theories/typing/contextual_refinement.v
with
86 additions
and
1 deletion
theories/typing/contextual_refinement.v
+
86
−
1
View file @
fbb9a9d5
...
@@ -311,6 +311,82 @@ Definition ctx_refines_alt (Γ : stringmap type)
...
@@ -311,6 +311,82 @@ Definition ctx_refines_alt (Γ : stringmap type)
rtc
erased_step
([
fill_ctx
K
e
],
σ₀
)
(
of_val
v1
::
thp
,
σ₁
)
→
rtc
erased_step
([
fill_ctx
K
e
],
σ₀
)
(
of_val
v1
::
thp
,
σ₁
)
→
∃
thp'
σ₁'
v2
,
rtc
erased_step
([
fill_ctx
K
e'
],
σ₀
)
(
of_val
v2
::
thp'
,
σ₁'
)
.
∃
thp'
σ₁'
v2
,
rtc
erased_step
([
fill_ctx
K
e'
],
σ₀
)
(
of_val
v2
::
thp'
,
σ₁'
)
.
(* Lemma erased_step_ectx (e e' : expr) tp' σ σ' K : *)
(* erased_step ([e], σ) (e' :: tp', σ') → *)
(* erased_step ([fill K e], σ) (fill K e' :: tp', σ'). *)
(* Proof. *)
(* intros [κ Hst]. inversion Hst; simplify_eq/=. *)
(* symmetry in H. apply app_singleton in H. *)
(* assert (t1 = [] ∧ e1 = e ∧ t2 = []) as (->&->&->). *)
(* { naive_solver. } *)
(* assert (e2 = e' ∧ tp' = efs) as [-> ->]. *)
(* { naive_solver. } *)
(* eapply fill_prim_step in H1. simpl in H1. *)
(* econstructor. eapply step_atomic with (t1 := []); eauto. *)
(* Qed. *)
Lemma
erased_step_ectx
(
e
e'
:
expr
)
tp
tp'
σ
σ'
K
:
erased_step
(
e
::
tp
,
σ
)
(
e'
::
tp'
,
σ'
)
→
erased_step
((
fill
K
e
)
::
tp
,
σ
)
(
fill
K
e'
::
tp'
,
σ'
)
.
Proof
.
intros
[
κ
Hst
]
.
inversion
Hst
;
simplify_eq
/=.
destruct
t1
as
[|
h1
t1
];
simplify_eq
/=.
{
simplify_eq
/=.
eapply
fill_prim_step
in
H1
.
simpl
in
H1
.
econstructor
.
eapply
step_atomic
with
(
t1
:=
[]);
eauto
.
}
econstructor
.
econstructor
;
eauto
.
+
rewrite
app_comm_cons
.
reflexivity
.
+
rewrite
app_comm_cons
.
reflexivity
.
Qed
.
Local
Definition
ffill
(
K
:
list
ectx_item
)
:
(
list
expr
*
state
)
→
(
list
expr
*
state
)
:=
fun
x
=>
match
x
with
|
(
e
::
tp
,
σ
)
=>
(
fill
K
e
::
tp
,
σ
)
|
([],
σ
)
=>
([],
σ
)
end
.
Lemma
erased_step_nonempty
(
tp
:
list
expr
)
σ
tp'
σ'
:
erased_step
(
tp
,
σ
)
(
tp'
,
σ'
)
→
tp'
≠
[]
.
Proof
.
intros
[?
Hs
]
.
destruct
Hs
as
[
e1
σ1'
e2
σ2'
efs
tp1
tp2
??
Hstep
];
simplify_eq
/=.
intros
[_
HH
]
%
app_eq_nil
.
by
inversion
HH
.
Qed
.
Lemma
rtc_erased_step_nonempty
(
tp
:
list
expr
)
σ
tp'
σ'
:
rtc
erased_step
(
tp
,
σ
)
(
tp'
,
σ'
)
→
tp
≠
[]
→
tp'
≠
[]
.
Proof
.
pose
(
P
:=
λ
(
x
y
:
list
expr
*
state
),
x
.
1
≠
[]
→
y
.
1
≠
[])
.
eapply
(
rtc_ind_r_weak
P
)
.
-
intros
[
tp2
σ2
]
.
unfold
P
.
naive_solver
.
-
intros
[
tp1
σ1
]
[
tp2
σ2
]
[
tp3
σ3
]
.
unfold
P
;
simpl
.
intros
?
?
%
erased_step_nonempty
.
naive_solver
.
Qed
.
Lemma
rtc_erased_step_ectx
(
e
e'
:
expr
)
tp
tp'
σ
σ'
K
:
rtc
erased_step
(
e
::
tp
,
σ
)
(
e'
::
tp'
,
σ'
)
→
rtc
erased_step
(
fill
K
e
::
tp
,
σ
)
(
fill
K
e'
::
tp'
,
σ'
)
.
Proof
.
change
(
rtc
erased_step
(
fill
K
e
::
tp
,
σ
)
(
fill
K
e'
::
tp'
,
σ'
))
with
(
rtc
erased_step
(
ffill
K
(
e
::
tp
,
σ
))
(
ffill
K
(
e'
::
tp'
,
σ'
)))
.
eapply
(
rtc_congruence
(
ffill
K
)
erased_step
)
.
clear
e
e'
tp
tp'
σ
σ'
.
intros
[
tp
σ
]
[
tp'
σ'
]
.
destruct
tp
as
[|
e
tp
]
.
-
inversion
1
.
inversion
H0
.
exfalso
.
simplify_eq
/=.
by
eapply
app_cons_not_nil
.
-
intros
Hstep1
.
assert
(
tp'
≠
[])
.
{
eapply
(
rtc_erased_step_nonempty
(
e
::
tp
))
.
econstructor
;
naive_solver
.
naive_solver
.
}
destruct
tp'
as
[|
e'
tp'
];
first
naive_solver
.
simpl
.
by
eapply
erased_step_ectx
.
Qed
.
Lemma
ctx_refines_impl_alt
Γ
e1
e2
τ
:
Lemma
ctx_refines_impl_alt
Γ
e1
e2
τ
:
(
Γ
⊨
e1
≤
ctx
≤
e2
:
τ
)
→
(
Γ
⊨
e1
≤
ctx
≤
e2
:
τ
)
→
ctx_refines_alt
Γ
e1
e2
τ
.
ctx_refines_alt
Γ
e1
e2
τ
.
...
@@ -328,7 +404,16 @@ Proof.
...
@@ -328,7 +404,16 @@ Proof.
+
repeat
econstructor
;
eauto
.
+
repeat
econstructor
;
eauto
.
+
repeat
econstructor
;
eauto
.
+
repeat
econstructor
;
eauto
.
+
unfold
C'
.
simpl
.
+
unfold
C'
.
simpl
.
admit
.
trans
(((
of_val
v1
)
;;
#
true
)
%
E
::
thp
,
σ1
);
last
first
.
{
econstructor
.
-
econstructor
.
eapply
(
step_atomic
)
with
(
t1
:=
[]);
try
reflexivity
.
admit
.
-
admit
.
}
pose
(
K
:=
[
AppRCtx
(
λ
:
<>
,
#
true
)
%
E
])
.
change
(
fill_ctx
C
e1
;;
#
true
)
%
E
with
(
fill
K
(
fill_ctx
C
e1
))
.
change
(
v1
;;
#
true
)
%
E
with
(
fill
K
(
of_val
v1
))
.
by
eapply
rtc_erased_step_ectx
.
Admitted
.
Admitted
.
Definition
ctx_equiv
Γ
e1
e2
τ
:=
Definition
ctx_equiv
Γ
e1
e2
τ
:=
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment