Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
ReLoC
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
ReLoC
Commits
bae8d2a6
Commit
bae8d2a6
authored
6 years ago
by
Dan Frumin
Browse files
Options
Downloads
Patches
Plain Diff
model.v
parent
25a57d82
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
_CoqProject
+2
-1
2 additions, 1 deletion
_CoqProject
theories/logic/model.v
+279
-0
279 additions, 0 deletions
theories/logic/model.v
theories/prelude/ctx_subst.v
+88
-0
88 additions, 0 deletions
theories/prelude/ctx_subst.v
with
369 additions
and
1 deletion
_CoqProject
+
2
−
1
View file @
bae8d2a6
-Q theories reloc
-Q theories reloc
-arg -w -arg -notation-overridden,-redundant-canonical-projection,-several-object-files
-arg -w -arg -notation-overridden,-redundant-canonical-projection,-several-object-files
theories/prelude/ctx_subst.v
theories/logic/spec_ra.v
theories/logic/spec_ra.v
theories/logic/spec_rules.v
theories/logic/spec_rules.v
theories/logic/model.v
This diff is collapsed.
Click to expand it.
theories/logic/model.v
0 → 100644
+
279
−
0
View file @
bae8d2a6
(* ReLoC -- Relational logic for fine-grained concurrency *)
(** The definition of the refinement proposition.
- The model for types and type combinators;
- Closure under context substitutions;
- Basic monadic rules *)
From
iris
.
heap_lang
Require
Export
lifting
metatheory
.
From
iris
.
base_logic
.
lib
Require
Import
invariants
.
From
iris
.
algebra
Require
Import
list
.
From
iris
.
heap_lang
Require
Import
notation
proofmode
.
From
reloc
Require
Import
logic
.
spec_rules
prelude
.
ctx_subst
.
(** Semantic intepretation of types *)
Record
lty2
`{
logrelG
Σ
}
:=
Lty2
{
lty2_car
:>
val
→
val
→
iProp
Σ
;
lty2_persistent
v1
v2
:
Persistent
(
lty2_car
v1
v2
)
}
.
Arguments
Lty2
{_
_}
_
%
I
{_}
.
Arguments
lty2_car
{_
_}
_
_
_
:
simpl
never
.
Bind
Scope
lty_scope
with
lty2
.
Delimit
Scope
lty_scope
with
lty2
.
Existing
Instance
lty2_persistent
.
(* The COFE structure on semantic types *)
Section
lty2_ofe
.
Context
`{
logrelG
Σ
}
.
Instance
lty2_equiv
:
Equiv
lty2
:=
λ
A
B
,
∀
w1
w2
,
A
w1
w2
≡
B
w1
w2
.
Instance
lty2_dist
:
Dist
lty2
:=
λ
n
A
B
,
∀
w1
w2
,
A
w1
w2
≡
{
n
}
≡
B
w1
w2
.
Lemma
lty2_ofe_mixin
:
OfeMixin
lty2
.
Proof
.
by
apply
(
iso_ofe_mixin
(
lty2_car
:
lty2
→
(
val
-
c
>
val
-
c
>
iProp
Σ
)))
.
Qed
.
Canonical
Structure
lty2C
:=
OfeT
lty2
lty2_ofe_mixin
.
Global
Instance
lty2_cofe
:
Cofe
ltyC2
.
Proof
.
(* apply (iso_cofe_subtype' (λ A : val -c> val -c> iProp Σ, ∀ w1 w2, Persistent (A w1 w2)) *)
(* (@Lty2 _ _ _) lty2_car)=> //. *)
(* - apply _. *)
(* - apply limit_preserving_forall=> w. *)
(* by apply bi.limit_preserving_Persistent=> n ??. *)
Admitted
.
Global
Instance
lty2_inhabited
:
Inhabited
lty2
:=
populate
(
Lty2
inhabitant
)
.
Global
Instance
lty2_car_ne
n
:
Proper
(
dist
n
==>
(
=
)
==>
(
=
)
==>
dist
n
)
lty2_car
.
Proof
.
by
intros
A
A'
?
w1
w2
<-
?
?
<-.
Qed
.
Global
Instance
lty2_car_proper
:
Proper
((
≡
)
==>
(
=
)
==>
(
=
)
==>
(
≡
))
lty2_car
.
Proof
.
by
intros
A
A'
?
w1
w2
<-
?
?
<-.
Qed
.
End
lty2_ofe
.
Section
semtypes
.
Context
`{
logrelG
Σ
}
.
Implicit
Types
A
B
:
lty2
.
Definition
interp_expr
(
E
:
coPset
)
(
e
e'
:
expr
)
(
A
:
lty2
)
:
iProp
Σ
:=
(
∀
j
K
,
j
⤇
fill
K
e'
=
{
E
,
⊤
}
=∗
WP
e
{{
v
,
∃
v'
,
j
⤇
fill
K
(
of_val
v'
)
∗
A
v
v'
}})
%
I
.
Global
Instance
interp_expr_ne
E
n
:
Proper
((
=
)
==>
(
=
)
==>
(
=
)
==>
dist
n
)
(
interp_expr
E
)
.
Proof
.
solve_proper
.
Qed
.
Definition
lty2_unit
:
lty2
:=
Lty2
(
λ
w1
w2
,
⌜
w1
=
#
()
∧
w2
=
#
()
⌝%
I
)
.
Definition
lty2_bool
:
lty2
:=
Lty2
(
λ
w1
w2
,
∃
b
:
bool
,
⌜
w1
=
#
b
∧
w2
=
#
b
⌝
)
%
I
.
Definition
lty2_int
:
lty2
:=
Lty2
(
λ
w1
w2
,
∃
n
:
Z
,
⌜
w1
=
#
n
∧
w2
=
#
n
⌝
)
%
I
.
Definition
lty2_arr
(
A1
A2
:
lty2
)
:
lty2
:=
Lty2
(
λ
w1
w2
,
□
∀
v1
v2
,
A1
v1
v2
-∗
interp_expr
⊤
(
App
w1
v1
)
(
App
w2
v2
)
A2
)
%
I
.
Definition
lty2_ref
(
A
:
lty2
)
:
lty2
:=
Lty2
(
λ
w1
w2
,
∃
l1
l2
:
loc
,
⌜
w1
=
#
l1
⌝
∧
⌜
w2
=
#
l2
⌝
∧
inv
(
relocN
.
@
(
l1
,
l2
))
(
∃
v1
v2
,
l1
↦
v1
∗
l2
↦
ₛ
v2
∗
A
v1
v2
))
%
I
.
End
semtypes
.
(* Nice notations *)
Notation
"()"
:=
lty2_unit
:
lty_scope
.
Infix
"→"
:=
lty2_arr
:
lty_scope
.
Notation
"'ref' A"
:=
(
lty2_ref
A
)
:
lty_scope
.
(* The semantic typing judgment *)
Definition
env_ltyped2
`{
logrelG
Σ
}
(
Γ
:
gmap
string
lty2
)
(
vs
:
gmap
string
(
val
*
val
))
:
iProp
Σ
:=
(
⌜
∀
x
,
is_Some
(
Γ
!!
x
)
↔
is_Some
(
vs
!!
x
)
⌝
∧
[
∗
map
]
i
↦
Avv
∈
map_zip
Γ
vs
,
lty2_car
Avv
.
1
Avv
.
2
.
1
Avv
.
2
.
2
)
%
I
.
Section
refinement
.
Context
`{
logrelG
Σ
}
.
Definition
refines_def
(
E
:
coPset
)
(
Γ
:
gmap
string
lty2
)
(
e
e'
:
expr
)
(
A
:
lty2
)
:
iProp
Σ
:=
(
∀
vvs
ρ
,
spec_ctx
ρ
-∗
env_ltyped2
Γ
vvs
-∗
interp_expr
E
(
subst_map
(
fst
<$>
vvs
)
e
)
(
subst_map
(
snd
<$>
vvs
)
e'
)
A
)
%
I
.
Definition
refines_aux
:
seal
refines_def
.
Proof
.
by
eexists
.
Qed
.
Definition
refines
:=
unseal
refines_aux
.
Definition
refines_eq
:
refines
=
refines_def
:=
seal_eq
refines_aux
.
End
refinement
.
Notation
"⟦ A ⟧ₑ"
:=
(
λ
e
e'
,
interp_expr
⊤
e
e'
A
)
.
Notation
"⟦ Γ ⟧*"
:=
(
env_ltyped2
Γ
)
.
Section
semtypes_properties
.
Context
`{
logrelG
Σ
}
.
(* The reference type relation is functional and injective.
Thanks to Amin. *)
Lemma
interp_ref_funct
E
(
A
:
lty2
)
(
l
l1
l2
:
loc
)
:
↑
relocN
⊆
E
→
(
ref
A
)
%
lty2
#
l
#
l1
∗
(
ref
A
)
%
lty2
#
l
#
l2
=
{
E
}
=∗
⌜
l1
=
l2
⌝.
Proof
.
iIntros
(?)
"[Hl1 Hl2] /="
.
iDestruct
"Hl1"
as
(
l'
l1'
)
"[% [% #Hl1]]"
.
simplify_eq
.
iDestruct
"Hl2"
as
(
l
l2'
)
"[% [% #Hl2]]"
.
simplify_eq
.
destruct
(
decide
(
l1'
=
l2'
))
as
[
->
|?];
eauto
.
iInv
(
relocN
.
@
(
l
,
l1'
))
as
(?
?)
"[>Hl ?]"
"Hcl"
.
iInv
(
relocN
.
@
(
l
,
l2'
))
as
(?
?)
"[>Hl' ?]"
"Hcl'"
.
simpl
.
iExFalso
.
iDestruct
(
gen_heap
.
mapsto_valid_2
with
"Hl Hl'"
)
as
%
Hfoo
.
compute
in
Hfoo
.
eauto
.
Qed
.
Lemma
interp_ref_inj
E
(
A
:
lty2
)
(
l
l1
l2
:
loc
)
:
↑
relocN
⊆
E
→
(
ref
A
)
%
lty2
#
l1
#
l
∗
(
ref
A
)
%
lty2
#
l2
#
l
=
{
E
}
=∗
⌜
l1
=
l2
⌝.
Proof
.
iIntros
(?)
"[Hl1 Hl2] /="
.
iDestruct
"Hl1"
as
(
l1'
l'
)
"[% [% #Hl1]]"
.
simplify_eq
.
iDestruct
"Hl2"
as
(
l2'
l
)
"[% [% #Hl2]]"
.
simplify_eq
.
destruct
(
decide
(
l1'
=
l2'
))
as
[
->
|?];
eauto
.
iInv
(
relocN
.
@
(
l1'
,
l
))
as
(?
?)
"(? & >Hl & ?)"
"Hcl"
.
iInv
(
relocN
.
@
(
l2'
,
l
))
as
(?
?)
"(? & >Hl' & ?)"
"Hcl'"
.
simpl
.
iExFalso
.
iDestruct
(
mapsto_valid_2
with
"Hl Hl'"
)
as
%
Hfoo
.
compute
in
Hfoo
.
eauto
.
Qed
.
Lemma
interp_ret
(
A
:
lty2
)
E
e1
e2
v1
v2
:
IntoVal
e1
v1
→
IntoVal
e2
v2
→
(|
=
{
E
,
⊤
}=>
A
v1
v2
)
%
I
-∗
interp_expr
E
e1
e2
A
.
Proof
.
iIntros
(
<-
<-
)
"HA"
.
iIntros
(
j
K
)
"Hj /="
.
iMod
"HA"
.
iApply
wp_value
;
eauto
.
Qed
.
End
semtypes_properties
.
Section
environment_properties
.
Context
`{
logrelG
Σ
}
.
Implicit
Types
A
B
:
lty2
.
Implicit
Types
Γ
:
gmap
string
lty2
.
Lemma
env_ltyped2_lookup
Γ
vs
x
A
:
Γ
!!
x
=
Some
A
→
⟦
Γ
⟧
*
vs
-∗
∃
v1
v2
,
⌜
vs
!!
x
=
Some
(
v1
,
v2
)
⌝
∧
A
v1
v2
.
Proof
.
iIntros
(
HΓx
)
"[Hlookup HΓ]"
.
iDestruct
"Hlookup"
as
%
Hlookup
.
destruct
(
proj1
(
Hlookup
x
))
as
[
v
Hx
];
eauto
.
iExists
v
.
1
,
v
.
2
.
iSplit
;
first
by
destruct
v
.
iApply
(
big_sepM_lookup
_
_
x
(
A
,
v
)
with
"HΓ"
)
.
by
rewrite
map_lookup_zip_with
HΓx
/=
Hx
.
Qed
.
Lemma
env_ltyped2_insert
Γ
vs
x
A
v1
v2
:
A
v1
v2
-∗
⟦
Γ
⟧
*
vs
-∗
⟦
(
binder_insert
x
A
Γ
)
⟧
*
(
binder_insert
x
(
v1
,
v2
)
vs
)
.
Proof
.
destruct
x
as
[|
x
]=>
/=
;
first
by
auto
.
iIntros
"#HA [Hlookup #HΓ]"
.
iDestruct
"Hlookup"
as
%
Hlookup
.
iSplit
.
-
iPureIntro
=>
y
.
rewrite
!
lookup_insert_is_Some'
.
naive_solver
.
-
rewrite
-
map_insert_zip_with
.
by
iApply
big_sepM_insert_2
.
Qed
.
End
environment_properties
.
Notation
"'{' E ';' Γ '}' ⊨ e1 '≼' e2 : A"
:=
(
refines
E
Γ
e1
%
E
e2
%
E
(
A
)
%
lty2
)
(
at
level
68
,
E
at
level
50
,
Γ
at
next
level
,
e1
,
e2
at
level
69
,
A
at
level
200
,
format
"'[hv' '{' E ';' Γ '}' ⊨ '/ ' e1 '/' '≼' '/ ' e2 : A ']'"
)
.
Notation
"Γ ⊨ e1 '≼' e2 : A"
:=
(
refines
⊤
Γ
e1
%
E
e2
%
E
(
A
)
%
lty2
)
%
I
(
at
level
68
,
e1
,
e2
at
level
69
,
A
at
level
200
,
format
"'[hv' Γ ⊨ '/ ' e1 '/' '≼' '/ ' e2 : A ']'"
)
.
(** Properties of the relational interpretation *)
Section
related_facts
.
Context
`{
logrelG
Σ
}
.
(* We need this to be able to open and closed invariants in front of logrels *)
Lemma
fupd_logrel
E1
E2
Γ
e
e'
A
:
((|
=
{
E1
,
E2
}=>
{
E2
;
Γ
}
⊨
e
≼
e'
:
A
)
-∗
({
E1
;
Γ
}
⊨
e
≼
e'
:
A
))
%
I
.
Proof
.
rewrite
refines_eq
/
refines_def
.
iIntros
"H"
.
iIntros
(
vvs
ρ
)
"#Hs HΓ"
;
iIntros
(
j
K
)
"Hj /="
.
iMod
"H"
as
"H"
.
iApply
(
"H"
with
"Hs HΓ Hj"
)
.
Qed
.
Global
Instance
elim_fupd_logrel
p
E1
E2
Γ
e
e'
P
A
:
(* TODO: DF: look at the booleans here *)
ElimModal
True
p
false
(|
=
{
E1
,
E2
}=>
P
)
P
({
E1
;
Γ
}
⊨
e
≼
e'
:
A
)
({
E2
;
Γ
}
⊨
e
≼
e'
:
A
)
.
Proof
.
rewrite
/
ElimModal
.
intros
_
.
iIntros
"[HP HI]"
.
iApply
fupd_logrel
.
destruct
p
;
simpl
;
rewrite
?bi
.
intuitionistically_elim
;
iMod
"HP"
;
iModIntro
;
by
iApply
"HI"
.
Qed
.
Global
Instance
elim_bupd_logrel
p
E
Γ
e
e'
P
A
:
ElimModal
True
p
false
(|
==>
P
)
P
({
E
;
Γ
}
⊨
e
≼
e'
:
A
)
({
E
;
Γ
}
⊨
e
≼
e'
:
A
)
.
Proof
.
rewrite
/
ElimModal
(
bupd_fupd
E
)
.
apply
:
elim_fupd_logrel
.
Qed
.
(* This + elim_modal_timless_bupd' is useful for stripping off laters of timeless propositions. *)
Global
Instance
is_except_0_logrel
E
Γ
e
e'
A
:
IsExcept0
({
E
;
Γ
}
⊨
e
≼
e'
:
A
)
.
Proof
.
rewrite
/
IsExcept0
.
iIntros
"HL"
.
iApply
fupd_logrel
.
by
iMod
"HL"
.
Qed
.
End
related_facts
.
Section
monadic
.
Context
`{
logrelG
Σ
}
.
Lemma
refines_ret
E
Γ
e1
e2
A
:
is_closed_expr
[]
e1
→
is_closed_expr
[]
e2
→
interp_expr
E
e1
e2
A
-∗
{
E
;
Γ
}
⊨
e1
≼
e2
:
A
.
Proof
.
iIntros
(??)
"HA"
.
rewrite
refines_eq
/
refines_def
.
iIntros
(
vvs
ρ
)
"#Hs #HΓ"
.
rewrite
!
subst_map_is_closed_nil
//.
Qed
.
Lemma
refines_bind
A
E
Γ
A'
e
e'
K
K'
:
({
E
;
Γ
}
⊨
e
≼
e'
:
A
)
-∗
(
∀
v
v'
,
A
v
v'
-∗
({
⊤
;
Γ
}
⊨
fill
K
(
of_val
v
)
≼
fill
K'
(
of_val
v'
)
:
A'
))
-∗
({
E
;
Γ
}
⊨
fill
K
e
≼
fill
K'
e'
:
A'
)
.
Proof
.
iIntros
"Hm Hf"
.
rewrite
refines_eq
/
refines_def
.
iIntros
(
vvs
ρ
)
"#Hs #HΓ"
.
iSpecialize
(
"Hm"
with
"Hs HΓ"
)
.
iIntros
(
j
K₁
)
"Hj /="
.
rewrite
!
subst_map_fill
-
fill_app
.
iMod
(
"Hm"
with
"Hj"
)
as
"Hm"
.
iModIntro
.
iApply
wp_bind
.
iApply
(
wp_wand
with
"Hm"
)
.
iIntros
(
v
)
.
iDestruct
1
as
(
v'
)
"[Hj HA]"
.
change
(
of_val
v'
)
with
(
subst_map
(
snd
<$>
vvs
)
(
of_val
v'
))
.
rewrite
fill_app
-!
subst_map_fill
.
iMod
(
"Hf"
with
"HA Hs HΓ Hj"
)
as
"Hf/="
.
by
rewrite
!
subst_map_fill
/=.
Qed
.
End
monadic
.
Typeclasses
Opaque
env_ltyped2
.
This diff is collapsed.
Click to expand it.
theories/prelude/ctx_subst.v
0 → 100644
+
88
−
0
View file @
bae8d2a6
From
iris
.
program_logic
Require
Export
ectx_language
ectxi_language
.
From
iris
.
heap_lang
Require
Export
lang
metatheory
.
From
stdpp
Require
Import
base
stringmap
fin_collections
fin_map_dom
.
(** Substitution in the contexts *)
Fixpoint
subst_map_ctx_item
(
es
:
stringmap
val
)
(
K
:
ectx_item
)
{
struct
K
}
:=
match
K
with
|
AppLCtx
v2
=>
AppLCtx
v2
|
AppRCtx
e1
=>
AppRCtx
(
subst_map
es
e1
)
|
UnOpCtx
op
=>
UnOpCtx
op
|
BinOpLCtx
op
v2
=>
BinOpLCtx
op
v2
|
BinOpRCtx
op
e1
=>
BinOpRCtx
op
(
subst_map
es
e1
)
|
IfCtx
e1
e2
=>
IfCtx
(
subst_map
es
e1
)
(
subst_map
es
e2
)
|
PairLCtx
v2
=>
PairLCtx
v2
|
PairRCtx
e1
=>
PairRCtx
(
subst_map
es
e1
)
|
FstCtx
=>
FstCtx
|
SndCtx
=>
SndCtx
|
InjLCtx
=>
InjLCtx
|
InjRCtx
=>
InjRCtx
|
CaseCtx
e1
e2
=>
CaseCtx
(
subst_map
es
e1
)
(
subst_map
es
e2
)
|
AllocCtx
=>
AllocCtx
|
LoadCtx
=>
LoadCtx
|
StoreLCtx
v2
=>
StoreLCtx
v2
|
StoreRCtx
e1
=>
StoreRCtx
(
subst_map
es
e1
)
|
CasLCtx
v1
v2
=>
CasLCtx
v1
v2
|
CasMCtx
e0
v2
=>
CasMCtx
(
subst_map
es
e0
)
v2
|
CasRCtx
e0
e1
=>
CasRCtx
(
subst_map
es
e0
)
(
subst_map
es
e1
)
|
FaaLCtx
v2
=>
FaaLCtx
v2
|
FaaRCtx
e1
=>
FaaRCtx
(
subst_map
es
e1
)
|
ProphLCtx
v2
=>
ProphLCtx
v2
|
ProphRCtx
e1
=>
ProphRCtx
(
subst_map
es
e1
)
end
.
Definition
subst_map_ctx
(
es
:
stringmap
val
)
(
K
:
list
ectx_item
)
:=
map
(
subst_map_ctx_item
es
)
K
.
Lemma
subst_map_fill_item
(
vs
:
stringmap
val
)
(
Ki
:
ectx_item
)
(
e
:
expr
)
:
subst_map
vs
(
fill_item
Ki
e
)
=
fill_item
(
subst_map_ctx_item
vs
Ki
)
(
subst_map
vs
e
)
.
Proof
.
induction
Ki
;
simpl
;
eauto
.
Qed
.
Lemma
subst_map_fill
(
vs
:
stringmap
val
)
(
K
:
list
ectx_item
)
(
e
:
expr
)
:
subst_map
vs
(
fill
K
e
)
=
fill
(
subst_map_ctx
vs
K
)
(
subst_map
vs
e
)
.
Proof
.
generalize
dependent
e
.
generalize
dependent
vs
.
induction
K
as
[|
Ki
K
];
eauto
.
intros
es
e
.
simpl
.
by
rewrite
IHK
subst_map_fill_item
.
Qed
.
(* TODO: move to metatheory.v *)
Lemma
subst_map_is_closed
X
e
vs
:
is_closed_expr
X
e
→
(
∀
x
,
x
∈
X
→
vs
!!
x
=
None
)
→
subst_map
vs
e
=
e
.
Proof
.
revert
X
vs
.
assert
(
∀
x
x1
x2
X
(
vs
:
gmap
string
val
),
(
∀
x
,
x
∈
X
→
vs
!!
x
=
None
)
→
x
∈
x2
:
b
:
x1
:
b
:
X
→
binder_delete
x1
(
binder_delete
x2
vs
)
!!
x
=
None
)
.
{
intros
x
x1
x2
X
vs
??
.
rewrite
!
lookup_binder_delete_None
.
set_solver
.
}
induction
e
=>
X
vs
/=
?
HX
;
destruct_and
?;
eauto
with
f_equal
.
by
rewrite
HX
.
Qed
.
Lemma
subst_map_is_closed_nil
e
vs
:
is_closed_expr
[]
e
→
subst_map
vs
e
=
e
.
Proof
.
intros
.
apply
subst_map_is_closed
with
[];
set_solver
.
Qed
.
Lemma
subst_map_is_closed
X
e
vs
:
is_closed_expr
X
e
→
(
∀
x
,
x
∈
X
→
vs
!!
x
=
None
)
→
subst_map
vs
e
=
e
.
Proof
.
revert
X
vs
.
induction
e
=>
X
vs
/=
;
rewrite
?bool_decide_spec
?andb_True
=>
Hc
HX
;
repeat
case_decide
;
simplify_eq
/=
;
f_equal
;
intuition
eauto
20
with
set_solver
.
-
specialize
(
HX
x
)
.
by
rewrite
HX
.
-
eapply
IHe
;
eauto
.
intro
y
.
destruct
f
as
[|
f
],
x
as
[|
x
];
simpl
;
eauto
;
intros
[
HH
|
HH
]
%
elem_of_list_In
;
simplify_eq
/=
;
rewrite
?lookup_delete_None
;
try
destruct
HH
;
eauto
;
repeat
right
;
apply
HX
,
elem_of_list_In
;
auto
.
Qed
.
Lemma
subst_map_is_closed_nil
e
vs
:
is_closed_expr
[]
e
→
subst_map
vs
e
=
e
.
Proof
.
intros
.
apply
subst_map_is_closed
with
[];
set_solver
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment