Skip to content
Snippets Groups Projects
Commit b7ca3e83 authored by Dan Frumin's avatar Dan Frumin
Browse files

Renamings

parent 94d94ab2
No related branches found
No related tags found
No related merge requests found
...@@ -10,7 +10,7 @@ From iris.heap_lang Require Import notation proofmode. ...@@ -10,7 +10,7 @@ From iris.heap_lang Require Import notation proofmode.
From reloc Require Import logic.spec_rules prelude.ctx_subst. From reloc Require Import logic.spec_rules prelude.ctx_subst.
(** Semantic intepretation of types *) (** Semantic intepretation of types *)
Record lty2 `{logrelG Σ} := Lty2 { Record lty2 `{relocG Σ} := Lty2 {
lty2_car :> val val iProp Σ; lty2_car :> val val iProp Σ;
lty2_persistent v1 v2 : Persistent (lty2_car v1 v2) lty2_persistent v1 v2 : Persistent (lty2_car v1 v2)
}. }.
...@@ -22,7 +22,7 @@ Existing Instance lty2_persistent. ...@@ -22,7 +22,7 @@ Existing Instance lty2_persistent.
(* The COFE structure on semantic types *) (* The COFE structure on semantic types *)
Section lty2_ofe. Section lty2_ofe.
Context `{logrelG Σ}. Context `{relocG Σ}.
Instance lty2_equiv : Equiv lty2 := λ A B, w1 w2, A w1 w2 B w1 w2. Instance lty2_equiv : Equiv lty2 := λ A B, w1 w2, A w1 w2 B w1 w2.
Instance lty2_dist : Dist lty2 := λ n A B, w1 w2, A w1 w2 {n} B w1 w2. Instance lty2_dist : Dist lty2 := λ n A B, w1 w2, A w1 w2 {n} B w1 w2.
...@@ -47,7 +47,7 @@ Section lty2_ofe. ...@@ -47,7 +47,7 @@ Section lty2_ofe.
End lty2_ofe. End lty2_ofe.
Section semtypes. Section semtypes.
Context `{logrelG Σ}. Context `{relocG Σ}.
Implicit Types A B : lty2. Implicit Types A B : lty2.
...@@ -79,13 +79,13 @@ Infix "→" := lty2_arr : lty_scope. ...@@ -79,13 +79,13 @@ Infix "→" := lty2_arr : lty_scope.
Notation "'ref' A" := (lty2_ref A) : lty_scope. Notation "'ref' A" := (lty2_ref A) : lty_scope.
(* The semantic typing judgment *) (* The semantic typing judgment *)
Definition env_ltyped2 `{logrelG Σ} (Γ : gmap string lty2) Definition env_ltyped2 `{relocG Σ} (Γ : gmap string lty2)
(vs : gmap string (val*val)) : iProp Σ := (vs : gmap string (val*val)) : iProp Σ :=
( x, is_Some (Γ !! x) is_Some (vs !! x) ( x, is_Some (Γ !! x) is_Some (vs !! x)
[ map] i Avv map_zip Γ vs, lty2_car Avv.1 Avv.2.1 Avv.2.2)%I. [ map] i Avv map_zip Γ vs, lty2_car Avv.1 Avv.2.1 Avv.2.2)%I.
Section refinement. Section refinement.
Context `{logrelG Σ}. Context `{relocG Σ}.
Definition refines_def (E : coPset) Definition refines_def (E : coPset)
(Γ : gmap string lty2) (Γ : gmap string lty2)
...@@ -106,7 +106,7 @@ Notation "⟦ A ⟧ₑ" := (λ e e', interp_expr ⊤ e e' A). ...@@ -106,7 +106,7 @@ Notation "⟦ A ⟧ₑ" := (λ e e', interp_expr ⊤ e e' A).
Notation "⟦ Γ ⟧*" := (env_ltyped2 Γ). Notation "⟦ Γ ⟧*" := (env_ltyped2 Γ).
Section semtypes_properties. Section semtypes_properties.
Context `{logrelG Σ}. Context `{relocG Σ}.
(* The reference type relation is functional and injective. (* The reference type relation is functional and injective.
Thanks to Amin. *) Thanks to Amin. *)
...@@ -154,7 +154,7 @@ Section semtypes_properties. ...@@ -154,7 +154,7 @@ Section semtypes_properties.
End semtypes_properties. End semtypes_properties.
Section environment_properties. Section environment_properties.
Context `{logrelG Σ}. Context `{relocG Σ}.
Implicit Types A B : lty2. Implicit Types A B : lty2.
Implicit Types Γ : gmap string lty2. Implicit Types Γ : gmap string lty2.
...@@ -168,6 +168,7 @@ Section environment_properties. ...@@ -168,6 +168,7 @@ Section environment_properties.
iApply (big_sepM_lookup _ _ x (A,v) with "HΓ"). iApply (big_sepM_lookup _ _ x (A,v) with "HΓ").
by rewrite map_lookup_zip_with HΓx /= Hx. by rewrite map_lookup_zip_with HΓx /= Hx.
Qed. Qed.
Lemma env_ltyped2_insert Γ vs x A v1 v2 : Lemma env_ltyped2_insert Γ vs x A v1 v2 :
A v1 v2 -∗ Γ * vs -∗ A v1 v2 -∗ Γ * vs -∗
(binder_insert x A Γ) * (binder_insert x (v1,v2) vs). (binder_insert x A Γ) * (binder_insert x (v1,v2) vs).
...@@ -178,27 +179,35 @@ Section environment_properties. ...@@ -178,27 +179,35 @@ Section environment_properties.
- rewrite -map_insert_zip_with. by iApply big_sepM_insert_2. - rewrite -map_insert_zip_with. by iApply big_sepM_insert_2.
Qed. Qed.
Lemma env_ltyped2_empty :
* ∅.
Proof.
iSplit.
- iPureIntro=> y. rewrite !lookup_empty -!not_eq_None_Some. by naive_solver.
- by rewrite map_zip_with_empty.
Qed.
End environment_properties. End environment_properties.
Notation "'{' E ';' Γ '}' ⊨ e1 '' e2 : A" := Notation "'{' E ';' Γ '}' ⊨ e1 '<<' e2 : A" :=
(refines E Γ e1%E e2%E (A)%lty2) (refines E Γ e1%E e2%E (A)%lty2)
(at level 68, E at level 50, Γ at next level, e1, e2 at level 69, (at level 100, E at level 50, Γ at next level, e1, e2 at next level,
A at level 200, A at level 200,
format "'[hv' '{' E ';' Γ '}' ⊨ '/ ' e1 '/' '' '/ ' e2 : A ']'"). format "'[hv' '{' E ';' Γ '}' ⊨ '/ ' e1 '/' '<<' '/ ' e2 : A ']'").
Notation "Γ ⊨ e1 '' e2 : A" := Notation "Γ ⊨ e1 '<<' e2 : A" :=
(refines Γ e1%E e2%E (A)%lty2)%I (refines Γ e1%E e2%E (A)%lty2)%I
(at level 68, e1, e2 at level 69, (at level 100, e1, e2 at next level,
A at level 200, A at level 200,
format "'[hv' Γ ⊨ '/ ' e1 '/' '' '/ ' e2 : A ']'"). format "'[hv' Γ ⊨ '/ ' e1 '/' '<<' '/ ' e2 : A ']'").
(** Properties of the relational interpretation *) (** Properties of the relational interpretation *)
Section related_facts. Section related_facts.
Context `{logrelG Σ}. Context `{relocG Σ}.
(* We need this to be able to open and closed invariants in front of logrels *) (* We need this to be able to open and closed invariants in front of logrels *)
Lemma fupd_logrel E1 E2 Γ e e' A : Lemma fupd_logrel E1 E2 Γ e e' A :
((|={E1,E2}=> {E2;Γ} e e' : A) ((|={E1,E2}=> {E2;Γ} e << e' : A)
-∗ ({E1;Γ} e e' : A))%I. -∗ ({E1;Γ} e << e' : A))%I.
Proof. Proof.
rewrite refines_eq /refines_def. rewrite refines_eq /refines_def.
iIntros "H". iIntros "H".
...@@ -210,7 +219,7 @@ Section related_facts. ...@@ -210,7 +219,7 @@ Section related_facts.
Global Instance elim_fupd_logrel p E1 E2 Γ e e' P A : Global Instance elim_fupd_logrel p E1 E2 Γ e e' P A :
(* TODO: DF: look at the booleans here *) (* TODO: DF: look at the booleans here *)
ElimModal True p false (|={E1,E2}=> P) P ElimModal True p false (|={E1,E2}=> P) P
({E1;Γ} e e' : A) ({E2;Γ} e e' : A). ({E1;Γ} e << e' : A) ({E2;Γ} e << e' : A).
Proof. Proof.
rewrite /ElimModal. intros _. rewrite /ElimModal. intros _.
iIntros "[HP HI]". iApply fupd_logrel. iIntros "[HP HI]". iApply fupd_logrel.
...@@ -220,7 +229,7 @@ Section related_facts. ...@@ -220,7 +229,7 @@ Section related_facts.
Global Instance elim_bupd_logrel p E Γ e e' P A : Global Instance elim_bupd_logrel p E Γ e e' P A :
ElimModal True p false (|==> P) P ElimModal True p false (|==> P) P
({E;Γ} e e' : A) ({E;Γ} e e' : A). ({E;Γ} e << e' : A) ({E;Γ} e << e' : A).
Proof. Proof.
rewrite /ElimModal (bupd_fupd E). rewrite /ElimModal (bupd_fupd E).
apply: elim_fupd_logrel. apply: elim_fupd_logrel.
...@@ -228,7 +237,7 @@ Section related_facts. ...@@ -228,7 +237,7 @@ Section related_facts.
(* This + elim_modal_timless_bupd' is useful for stripping off laters of timeless propositions. *) (* This + elim_modal_timless_bupd' is useful for stripping off laters of timeless propositions. *)
Global Instance is_except_0_logrel E Γ e e' A : Global Instance is_except_0_logrel E Γ e e' A :
IsExcept0 ({E;Γ} e e' : A). IsExcept0 ({E;Γ} e << e' : A).
Proof. Proof.
rewrite /IsExcept0. rewrite /IsExcept0.
iIntros "HL". iIntros "HL".
...@@ -239,12 +248,12 @@ Section related_facts. ...@@ -239,12 +248,12 @@ Section related_facts.
End related_facts. End related_facts.
Section monadic. Section monadic.
Context `{logrelG Σ}. Context `{relocG Σ}.
Lemma refines_ret E Γ e1 e2 A : Lemma refines_ret E Γ e1 e2 A :
is_closed_expr [] e1 is_closed_expr [] e1
is_closed_expr [] e2 is_closed_expr [] e2
interp_expr E e1 e2 A -∗ {E;Γ} e1 e2 : A. interp_expr E e1 e2 A -∗ {E;Γ} e1 << e2 : A.
Proof. Proof.
iIntros (??) "HA". iIntros (??) "HA".
rewrite refines_eq /refines_def. rewrite refines_eq /refines_def.
...@@ -253,10 +262,10 @@ Section monadic. ...@@ -253,10 +262,10 @@ Section monadic.
Qed. Qed.
Lemma refines_bind A E Γ A' e e' K K' : Lemma refines_bind A E Γ A' e e' K K' :
({E;Γ} e e' : A) -∗ ({E;Γ} e << e' : A) -∗
( v v', A v v' -∗ ( v v', A v v' -∗
({;Γ} fill K (of_val v) fill K' (of_val v') : A')) -∗ ({;Γ} fill K (of_val v) << fill K' (of_val v') : A')) -∗
({E;Γ} fill K e fill K' e' : A'). ({E;Γ} fill K e << fill K' e' : A').
Proof. Proof.
iIntros "Hm Hf". iIntros "Hm Hf".
rewrite refines_eq /refines_def. rewrite refines_eq /refines_def.
......
...@@ -16,9 +16,9 @@ Definition cfgUR := prodUR tpoolUR (gen_heapUR loc val). ...@@ -16,9 +16,9 @@ Definition cfgUR := prodUR tpoolUR (gen_heapUR loc val).
(** The CMRA for the thread pool. *) (** The CMRA for the thread pool. *)
Class cfgSG Σ := CFGSG { cfg_inG :> inG Σ (authR cfgUR); cfg_name : gname }. Class cfgSG Σ := CFGSG { cfg_inG :> inG Σ (authR cfgUR); cfg_name : gname }.
Class logrelG Σ := LogrelG { Class relocG Σ := RelocG {
logrelG_heapG :> heapG Σ; relocG_heapG :> heapG Σ;
logrelG_cfgG :> cfgSG Σ; relocG_cfgG :> cfgSG Σ;
}. }.
Fixpoint to_tpool_go (i : nat) (tp : list expr) : tpoolUR := Fixpoint to_tpool_go (i : nat) (tp : list expr) : tpoolUR :=
......
...@@ -6,7 +6,7 @@ From iris.heap_lang Require Export lang notation. ...@@ -6,7 +6,7 @@ From iris.heap_lang Require Export lang notation.
From reloc.logic Require Export spec_ra. From reloc.logic Require Export spec_ra.
Import uPred. Import uPred.
Section rules. Section rules.
Context `{logrelG Σ}. Context `{relocG Σ}.
Implicit Types P Q : iProp Σ. Implicit Types P Q : iProp Σ.
Implicit Types Φ : val iProp Σ. Implicit Types Φ : val iProp Σ.
Implicit Types σ : state. Implicit Types σ : state.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment