Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lambda-rust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Service Desk
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
lambda-rust
Commits
eaee4de7
There was a problem fetching the pipeline summary.
Commit
eaee4de7
authored
7 years ago
by
Jacques-Henri Jourdan
Browse files
Options
Downloads
Patches
Plain Diff
Rearranging lifetime.v. Changing the proof of bor_unnest: we do not need atomic accessors here.
parent
20623c96
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Pipeline
#
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/lifetime/lifetime.v
+35
-36
35 additions, 36 deletions
theories/lifetime/lifetime.v
with
35 additions
and
36 deletions
theories/lifetime/lifetime.v
+
35
−
36
View file @
eaee4de7
...
@@ -110,6 +110,35 @@ Proof.
...
@@ -110,6 +110,35 @@ Proof.
-
iIntros
"!> !>"
.
iMod
"Hclose"
as
"_"
.
by
iApply
(
bor_fake
with
"LFT"
)
.
-
iIntros
"!> !>"
.
iMod
"Hclose"
as
"_"
.
by
iApply
(
bor_fake
with
"LFT"
)
.
Qed
.
Qed
.
Lemma
bor_later_tok
E
q
κ
P
:
↑
lftN
⊆
E
→
lft_ctx
-∗
&
{
κ
}(
▷
P
)
-∗
q
.[
κ
]
=
{
E
}
▷=∗
&
{
κ
}
P
∗
q
.[
κ
]
.
Proof
.
iIntros
(?)
"#LFT Hb Htok"
.
iMod
(
bor_acc_cons
with
"LFT Hb Htok"
)
as
"[HP Hclose]"
;
first
done
.
iModIntro
.
iNext
.
iApply
(
"Hclose"
with
"[] HP"
)
.
by
iIntros
"!> $"
.
Qed
.
Lemma
bor_persistent
P
`{
!
PersistentP
P
}
E
κ
:
↑
lftN
⊆
E
→
lft_ctx
-∗
&
{
κ
}
P
=
{
E
}
=∗
▷
P
∨
[
†
κ
]
.
Proof
.
iIntros
(?)
"#LFT Hb"
.
iMod
(
bor_acc_atomic
with
"LFT Hb"
)
as
"[[#HP Hob]|[#H† Hclose]]"
;
first
done
.
-
iMod
(
"Hob"
with
"HP"
)
as
"_"
.
auto
.
-
iMod
"Hclose"
as
"_"
.
auto
.
Qed
.
Lemma
bor_persistent_tok
P
`{
!
PersistentP
P
}
E
κ
q
:
↑
lftN
⊆
E
→
lft_ctx
-∗
&
{
κ
}
P
-∗
q
.[
κ
]
=
{
E
}
=∗
▷
P
∗
q
.[
κ
]
.
Proof
.
iIntros
(?)
"#LFT Hb Htok"
.
iMod
(
bor_acc
with
"LFT Hb Htok"
)
as
"[#HP Hob]"
;
first
done
.
by
iMod
(
"Hob"
with
"HP"
)
as
"[_ $]"
.
Qed
.
Lemma
later_bor_static
E
P
:
Lemma
later_bor_static
E
P
:
↑
lftN
⊆
E
→
↑
lftN
⊆
E
→
lft_ctx
-∗
▷
P
=
{
E
}
=∗
&
{
static
}
P
.
lft_ctx
-∗
▷
P
=
{
E
}
=∗
&
{
static
}
P
.
...
@@ -125,15 +154,6 @@ Proof.
...
@@ -125,15 +154,6 @@ Proof.
iApply
lft_tok_static
.
iApply
lft_tok_static
.
Qed
.
Qed
.
Lemma
bor_later_tok
E
q
κ
P
:
↑
lftN
⊆
E
→
lft_ctx
-∗
&
{
κ
}(
▷
P
)
-∗
q
.[
κ
]
=
{
E
}
▷=∗
&
{
κ
}
P
∗
q
.[
κ
]
.
Proof
.
iIntros
(?)
"#LFT Hb Htok"
.
iMod
(
bor_acc_cons
with
"LFT Hb Htok"
)
as
"[HP Hclose]"
;
first
done
.
iModIntro
.
iNext
.
iApply
(
"Hclose"
with
"[] HP"
)
.
by
iIntros
"!> $"
.
Qed
.
Lemma
rebor
E
κ
κ'
P
:
Lemma
rebor
E
κ
κ'
P
:
↑
lftN
⊆
E
→
↑
lftN
⊆
E
→
lft_ctx
-∗
κ'
⊑
κ
-∗
&
{
κ
}
P
=
{
E
}
=∗
&
{
κ'
}
P
∗
([
†
κ'
]
=
{
E
}
=∗
&
{
κ
}
P
)
.
lft_ctx
-∗
κ'
⊑
κ
-∗
&
{
κ
}
P
=
{
E
}
=∗
&
{
κ'
}
P
∗
([
†
κ'
]
=
{
E
}
=∗
&
{
κ
}
P
)
.
...
@@ -152,33 +172,12 @@ Lemma bor_unnest E κ κ' P :
...
@@ -152,33 +172,12 @@ Lemma bor_unnest E κ κ' P :
lft_ctx
-∗
&
{
κ'
}
&
{
κ
}
P
=
{
E
}
▷=∗
&
{
κ
⊓
κ'
}
P
.
lft_ctx
-∗
&
{
κ'
}
&
{
κ
}
P
=
{
E
}
▷=∗
&
{
κ
⊓
κ'
}
P
.
Proof
.
Proof
.
iIntros
(?)
"#LFT Hbor"
.
iIntros
(?)
"#LFT Hbor"
.
iMod
(
bor_acc_atomic_cons
with
"LFT Hbor"
)
as
rewrite
->
(
bor_unfold_idx
_
P
)
.
"[[Hbor Hclose]|[H† Hclose]]"
;
first
done
.
iMod
(
bor_exists
with
"LFT Hbor"
)
as
(
i
)
"Hbor"
;
[
done
|]
.
-
rewrite
->
bor_unfold_idx
.
iDestruct
"Hbor"
as
(
i
)
"[#Hidx Hbor]"
.
iMod
(
bor_sep
with
"LFT Hbor"
)
as
"[Hidx Hbor]"
;
[
done
|]
.
iMod
(
"Hclose"
with
"[] Hbor"
)
as
"Hbor"
.
iMod
(
bor_persistent
with
"LFT Hidx"
)
as
"#[Hidx|H†]"
;
[
done
|
|]
.
{
iIntros
"!> H"
.
rewrite
bor_unfold_idx
.
auto
with
iFrame
.
}
-
iIntros
"!>"
.
iNext
.
by
iApply
(
idx_bor_unnest
with
"LFT Hidx Hbor"
)
.
iIntros
"!>"
;
iNext
.
by
iApply
(
idx_bor_unnest
with
"LFT Hidx Hbor"
)
.
-
iApply
(
bor_fake
with
"LFT"
);
[
done
|]
.
rewrite
-
lft_dead_or
.
auto
.
-
iMod
"Hclose"
as
"_"
.
iApply
(
bor_fake
with
"LFT"
);
first
done
.
rewrite
-
lft_dead_or
.
auto
.
Qed
.
Lemma
bor_persistent
P
`{
!
PersistentP
P
}
E
κ
:
↑
lftN
⊆
E
→
lft_ctx
-∗
&
{
κ
}
P
=
{
E
}
=∗
▷
P
∨
[
†
κ
]
.
Proof
.
iIntros
(?)
"#LFT Hb"
.
iMod
(
bor_acc_atomic
with
"LFT Hb"
)
as
"[[#HP Hob]|[#H† Hclose]]"
;
first
done
.
-
iMod
(
"Hob"
with
"HP"
)
as
"_"
.
auto
.
-
iMod
"Hclose"
as
"_"
.
auto
.
Qed
.
Lemma
bor_persistent_tok
P
`{
!
PersistentP
P
}
E
κ
q
:
↑
lftN
⊆
E
→
lft_ctx
-∗
&
{
κ
}
P
-∗
q
.[
κ
]
=
{
E
}
=∗
▷
P
∗
q
.[
κ
]
.
Proof
.
iIntros
(?)
"#LFT Hb Htok"
.
iMod
(
bor_acc
with
"LFT Hb Htok"
)
as
"[#HP Hob]"
;
first
done
.
by
iMod
(
"Hob"
with
"HP"
)
as
"[_ $]"
.
Qed
.
Qed
.
Lemma
lft_incl_static
κ
:
(
κ
⊑
static
)
%
I
.
Lemma
lft_incl_static
κ
:
(
κ
⊑
static
)
%
I
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment