Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lambda-rust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Service Desk
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
lambda-rust
Commits
951859a2
Commit
951859a2
authored
8 years ago
by
Jacques-Henri Jourdan
Browse files
Options
Downloads
Patches
Plain Diff
Axiomatize lifetime logic.
parent
f1ab603b
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
_CoqProject
+1
-0
1 addition, 0 deletions
_CoqProject
lifetime.v
+156
-0
156 additions, 0 deletions
lifetime.v
with
157 additions
and
0 deletions
_CoqProject
+
1
−
0
View file @
951859a2
...
...
@@ -10,3 +10,4 @@ proofmode.v
races.v
tactics.v
wp_tactics.v
lifetime.v
This diff is collapsed.
Click to expand it.
lifetime.v
0 → 100644
+
156
−
0
View file @
951859a2
From
iris
.
program_logic
Require
Export
viewshifts
pviewshifts
.
From
iris
.
program_logic
Require
Import
invariants
namespaces
.
From
iris
.
prelude
Require
Import
strings
.
Definition
lftN
:=
nroot
.
@
"lft"
.
Definition
lifetime
:=
positive
.
Axiom
lifetimeG
:
∀
(
Λ
:
language
)
(
Σ
:
gFunctors
),
Set
.
Existing
Class
lifetimeG
.
Axiom
lifetimeG_iris_inG
:
∀
Λ
Σ
,
lifetimeG
Λ
Σ
→
irisG
Λ
Σ
.
Existing
Instance
lifetimeG_iris_inG
.
(*** Definitions *)
Parameter
lft
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
:
lifetime
),
iProp
Σ
.
Parameter
lft_own
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
:
lifetime
)
(
q
:
Qp
),
iProp
Σ
.
Parameter
lft_dead
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
:
lifetime
),
iProp
Σ
.
Parameter
lft_incl
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
κ'
:
lifetime
),
iProp
Σ
.
Parameter
lft_extract
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
:
lifetime
)
(
P
:
iProp
Σ
),
iProp
Σ
.
Parameter
lft_borrow
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
:
lifetime
)
(
P
:
iProp
Σ
),
iProp
Σ
.
Parameter
lft_open_borrow
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
:
lifetime
)
(
q
:
Qp
)
(
P
:
iProp
Σ
),
iProp
Σ
.
Parameter
lft_shr_borrow
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
:
lifetime
)
(
N
:
namespace
)
(
P
:
iProp
Σ
),
iProp
Σ
.
Parameter
lft_frac_borrow
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
:
lifetime
)
(
P
:
Qp
→
iProp
Σ
),
iProp
Σ
.
Parameter
lft_pers_borrow
:
∀
`{
lifetimeG
Λ
Σ
}
(
κ
:
lifetime
)
(
i
:
gname
)
(
P
:
iProp
Σ
),
iProp
Σ
.
Parameter
lft_pers_borrow_own
:
∀
`{
lifetimeG
Λ
Σ
}
(
i
:
gname
)
(
κ
:
lifetime
),
iProp
Σ
.
(*** Notations *)
Notation
"[ κ ]{ q }"
:=
(
lft_own
κ
q
)
:
uPred_scope
.
Notation
"[† κ ]"
:=
(
lft_dead
κ
)
:
uPred_scope
.
Infix
"⊑"
:=
lft_incl
(
at
level
70
)
:
uPred_scope
.
Notation
"κ ∋ P"
:=
(
lft_extract
κ
P
)
(
at
level
75
,
right
associativity
)
:
uPred_scope
.
Notation
"&{ κ } P"
:=
(
lft_borrow
κ
P
)
(
at
level
20
,
right
associativity
)
:
uPred_scope
.
Notation
"&shr{ κ | N } P"
:=
(
lft_shr_borrow
κ
N
P
)
(
at
level
20
,
right
associativity
)
:
uPred_scope
.
Notation
"&frac{ κ } P"
:=
(
lft_frac_borrow
κ
P
)
(
at
level
20
,
right
associativity
)
:
uPred_scope
.
Section
instances
.
Context
`{
lifetimeG
Λ
Σ
}
.
(*** PersitentP and TimelessP instances. *)
Axiom
lft_persistent
:
∀
κ
,
PersistentP
(
lft
κ
)
.
Global
Existing
Instance
lft_persistent
.
Axiom
lft_own_timeless
:
∀
κ
q
,
TimelessP
[
κ
]{
q
}
.
Global
Existing
Instance
lft_own_timeless
.
Axiom
lft_dead_persistent
:
∀
κ
,
PersistentP
[
†
κ
]
.
Axiom
lft_dead_timeless
:
∀
κ
,
TimelessP
[
†
κ
]
.
Global
Existing
Instances
lft_dead_persistent
lft_dead_timeless
.
Axiom
lft_incl_persistent
:
∀
κ
κ'
,
PersistentP
(
κ
⊑
κ'
)
.
Global
Existing
Instance
lft_incl_persistent
.
Axiom
lft_shr_borrow_persistent
:
∀
κ
N
P
,
PersistentP
(
lft_shr_borrow
κ
N
P
)
.
Global
Existing
Instance
lft_shr_borrow_persistent
.
Axiom
lft_frac_borrow_persistent
:
∀
κ
P
,
PersistentP
(
lft_frac_borrow
κ
P
)
.
Global
Existing
Instance
lft_frac_borrow_persistent
.
Axiom
lft_pers_borrow_persistent
:
∀
κ
i
P
,
PersistentP
(
lft_pers_borrow
κ
i
P
)
.
Global
Existing
Instance
lft_pers_borrow_persistent
.
Axiom
lft_pers_borrow_own_timeless
:
∀
i
κ
,
TimelessP
(
lft_pers_borrow_own
i
κ
)
.
Global
Existing
Instance
lft_pers_borrow_own_timeless
.
End
instances
.
Section
lft
.
Context
`{
lifetimeG
Λ
Σ
}
.
(** Basic rules about lifetimes. *)
Axiom
lft_begin
:
∀
`{
nclose
lftN
⊆
E
},
True
=
{
E
}=>
∃
κ
,
[
κ
]{
1
}
★
lft
κ
.
(* TODO : Do we really need a full mask here ? *)
Axiom
lft_end
:
∀
κ
,
lft
κ
⊢
[
κ
]{
1
}
=
{
⊤
,
∅
}
=★
▷
|
=
{
∅
,
⊤
}=>
[
†
κ
]
.
Axiom
lft_own_op
:
∀
κ
q1
q2
,
[
κ
]{
q1
}
★
[
κ
]{
q2
}
⊣⊢
[
κ
]{
q1
+
q2
}
.
(** Creating borrows and using them. *)
Axiom
lft_borrow_create
:
∀
`{
nclose
lftN
⊆
E
}
κ
P
,
lft
κ
⊢
▷
P
=
{
E
}=>
&
{
κ
}
P
★
κ
∋
P
.
Axiom
lft_borrow_split
:
∀
`{
nclose
lftN
⊆
E
}
κ
P
Q
,
&
{
κ
}
(
P
★
Q
)
=
{
E
}=>
&
{
κ
}
P
★
&
{
κ
}
Q
.
Axiom
lft_borrow_combine
:
∀
`{
nclose
lftN
⊆
E
}
κ
P
Q
,
&
{
κ
}
P
★
&
{
κ
}
Q
=
{
E
}=>
&
{
κ
}(
P
★
Q
)
.
Axiom
lft_borrow_open
:
∀
`{
nclose
lftN
⊆
E
}
κ
P
q
,
&
{
κ
}
P
★
[
κ
]{
q
}
=
{
E
}=>
▷
P
★
lft_open_borrow
κ
q
P
.
Axiom
lft_borrow_close
:
∀
`{
nclose
lftN
⊆
E
}
κ
P
q
,
▷
P
★
lft_open_borrow
κ
q
P
=
{
E
}=>
&
{
κ
}
P
★
[
κ
]{
q
}
.
Axiom
lft_open_borrow_contravar
:
∀
`{
nclose
lftN
⊆
E
}
κ
P
Q
q
,
▷
(
▷
Q
=
{
⊤
∖
nclose
lftN
}
=★
▷
P
)
★
lft_open_borrow
κ
q
P
=
{
E
}=>
lft_open_borrow
κ
q
Q
.
Axiom
lft_reborrow
:
∀
`{
nclose
lftN
⊆
E
}
κ
κ'
P
,
κ'
⊑
κ
⊢
&
{
κ
}
P
=
{
E
}=>
&
{
κ'
}
P
★
κ'
∋
&
{
κ
}
P
.
Axiom
lft_borrow_unnest
:
∀
`{
nclose
lftN
⊆
E
}
κ
κ'
P
q'
,
κ'
⊑
κ
⊢
&
{
κ
}
P
★
lft_open_borrow
κ'
q'
(
&
{
κ
}
P
)
=
{
E
}=>
[
κ'
]{
q'
}
★
&
{
κ'
}
P
.
(** Lifetime inclusion. *)
Axiom
lft_mkincl
:
∀
`{
nclose
lftN
⊆
E
}
κ
κ'
q
,
lft
κ
⊢
&
{
κ'
}
[
κ
]{
q
}
=
{
E
}=>
κ'
⊑
κ
.
Axiom
lft_incl_refl
:
∀
κ
,
True
⊢
κ
⊑
κ
.
Axiom
lft_incl_trans
:
∀
κ
κ'
κ''
,
κ
⊑
κ'
∧
κ'
⊑
κ''
⊢
κ
⊑
κ''
.
Axiom
lft_incl_trade
:
∀
`{
nclose
lftN
⊆
E
}
κ
κ'
q
,
κ'
⊑
κ
⊢
[
κ
]{
q
}
=
{
E
}=>
∃
q'
,
[
κ'
]{
q'
}
★
[
κ'
]{
q'
}
=
{
E
}
=★
[
κ
]{
q
}
.
Axiom
lft_borrow_incl
:
∀
κ
κ'
P
,
κ'
⊑
κ
⊢
&
{
κ
}
P
→
&
{
κ'
}
P
.
(** Extraction. *)
(* Axiom lft_extract_split : ∀ κ P Q, κ ∋ (P ★ Q) ={E}=> κ ∋ P ★ κ ∋ Q .*)
Axiom
lft_extract_combine
:
∀
`{
nclose
lftN
⊆
E
}
κ
P
Q
,
κ
∋
P
★
κ
∋
Q
=
{
E
}=>
κ
∋
(
P
★
Q
)
.
Axiom
lft_extract_out
:
∀
`{
nclose
lftN
⊆
E
}
κ
P
,
[
†
κ
]
⊢
κ
∋
P
=
{
E
}=>
▷
P
.
(** Shared borrows. *)
Axiom
lft_borrow_share
:
∀
E
κ
P
N
,
nclose
N
⊆
E
→
N
⊥
lftN
→
&
{
κ
}
P
=
{
N
}=>
&
shr
{
κ
|
N
}
P
.
Axiom
lft_shr_borrow_open
:
∀
`{
nclose
lftN
⊆
E
}
κ
P
q
N
,
&
shr
{
κ
|
N
}
P
⊢
[
κ
]{
q
}
=
{
E
,
E
∖
N
}=>
▷
P
★
▷
P
=
{
E
∖
N
,
E
}
=★
[
κ
]{
q
}
.
Axiom
lft_shr_borrow_incl
:
∀
κ
κ'
P
N
,
κ'
⊑
κ
⊢
&
shr
{
κ
|
N
}
P
→
&
shr
{
κ'
|
N
}
P
.
(** Fractured borrows. *)
(* TODO : I think an arbitrary mask is ok here. Not sure. *)
Axiom
lft_borrow_fracture
:
∀
E
κ
φ
,
&
{
κ
}(
φ
1
%
Qp
)
=
{
E
}=>
&
frac
{
κ
}
φ
.
Axiom
lft_frac_borrow_open
:
∀
`{
nclose
lftN
⊆
E
}
κ
φ
q
,
□
(
∀
q1
q2
,
φ
(
q1
+
q2
)
%
Qp
↔
φ
q1
★
φ
q2
)
★
&
frac
{
κ
}
φ
⊢
[
κ
]{
q
}
=
{
E
}=>
∃
q'
,
▷
φ
q'
★
▷
φ
q'
=
{
E
}
=★
[
κ
]{
q
}
.
Axiom
lft_frac_borrow_incl
:
∀
κ
κ'
φ
,
κ'
⊑
κ
⊢
&
frac
{
κ
}
φ
→
&
frac
{
κ'
}
φ
.
(** Persistent borrows. *)
(* TODO : Build all the other borrows from them. *)
Axiom
lft_borrow_persist
:
∀
κ
P
,
&
{
κ
}
P
⊣⊢
∃
κ'
i
,
κ
⊑
κ'
★
lft_pers_borrow
κ
i
P
★
lft_pers_borrow_own
i
κ
.
Axiom
lft_pers_borrow_open
:
∀
`{
nclose
lftN
⊆
E
}
κ
i
P
q
,
lft_pers_borrow
κ
i
P
⊢
lft_pers_borrow_own
i
κ
★
[
κ
]{
q
}
=
{
E
}=>
▷
P
★
▷
P
=
{
E
}
=★
lft_pers_borrow_own
i
κ
★
[
κ
]{
q
}
.
End
lft
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment