Skip to content
Snippets Groups Projects
Commit 7a60a06e authored by Hai Dang's avatar Hai Dang
Browse files

bump gpfsl

parent 2c328265
Branches
Tags
No related merge requests found
Pipeline #12909 passed
...@@ -10,5 +10,5 @@ build: [make "-j%{jobs}%"] ...@@ -10,5 +10,5 @@ build: [make "-j%{jobs}%"]
install: [make "install"] install: [make "install"]
remove: [ "sh" "-c" "rm -rf '%{lib}%/coq/user-contrib/lrust'" ] remove: [ "sh" "-c" "rm -rf '%{lib}%/coq/user-contrib/lrust'" ]
depends: [ depends: [
"coq-gpfsl" { (= "dev.2018-11-04.0.06dc5416") | (= "dev") } "coq-gpfsl" { (= "dev.2018-11-15.0.5b0cfc8b") | (= "dev") }
] ]
...@@ -26,12 +26,12 @@ Section type_soundness. ...@@ -26,12 +26,12 @@ Section type_soundness.
Theorem type_soundness `{typePreG Σ} (main : val) σ t : Theorem type_soundness `{typePreG Σ} (main : val) σ t :
( `{typeG Σ}, typed_val main main_type) ( `{typeG Σ}, typed_val main main_type)
rtc erased_step ([(main [exit_cont] at init_tview)%E], mkGB ) (t, σ) rtc erased_step ([(main [exit_cont] at init_tview)%E], mkGB ) (t, σ)
(* nonracing_threadpool t σ ∧ *) (* TODO : prove DRF theorem *) (* nonracing_threadpool t σ ∧ *) (* TODO : prove DRF theorem *)
( e 𝓥, (e at 𝓥)%E t is_Some (to_val e) reducible (e at 𝓥) σ). ( e 𝓥, (e at 𝓥)%E t is_Some (to_val e) reducible (e at 𝓥) σ).
Proof. Proof.
intros Hmain Hrtc. intros Hmain Hrtc.
cut (adequate NotStuck (main [exit_cont]%E at init_tview) (mkGB ) (λ _ _, True)). cut (adequate NotStuck (main [exit_cont]%E at init_tview) (mkGB ) (λ _ _, True)).
{ (* split. by eapply adequate_nonracing. *) { (* split. by eapply adequate_nonracing. *)
intros. intros.
edestruct (adequate_not_stuck NotStuck (main [exit_cont]%E at init_tview)) edestruct (adequate_not_stuck NotStuck (main [exit_cont]%E at init_tview))
...@@ -64,7 +64,7 @@ End type_soundness. ...@@ -64,7 +64,7 @@ End type_soundness.
Theorem type_soundness_closed (main : val) σ t : Theorem type_soundness_closed (main : val) σ t :
( `{typeG typeΣ}, typed_val main main_type) ( `{typeG typeΣ}, typed_val main main_type)
rtc erased_step ([(main [exit_cont] at init_tview)%E], mkGB ) (t, σ) rtc erased_step ([(main [exit_cont] at init_tview)%E], mkGB ) (t, σ)
(* nonracing_threadpool t σ ∧ *) (* TODO : prove DRF theorem *) (* nonracing_threadpool t σ ∧ *) (* TODO : prove DRF theorem *)
( e 𝓥, (e at 𝓥)%E t is_Some (to_val e) reducible (e at 𝓥) σ). ( e 𝓥, (e at 𝓥)%E t is_Some (to_val e) reducible (e at 𝓥) σ).
Proof. intros. eapply @type_soundness; try done. apply _. Qed. Proof. intros. eapply @type_soundness; try done. apply _. Qed.
...@@ -56,8 +56,8 @@ Section type_context. ...@@ -56,8 +56,8 @@ Section type_context.
eval_path p = Some v Closed [] p. eval_path p = Some v Closed [] p.
Proof. Proof.
intros Hpv. revert v Hpv. intros Hpv. revert v Hpv.
induction p as [| | | | |[] p IH [| | |[]| | | | | | | | | | | |] _| induction p as [| | | | |[] p IH [| | |[]| | | | | | | | | | |] _|
| | | | | | | | |]=>//. | | | | | | | |]=>//.
- unfold eval_path=>? /of_to_val <-. apply is_closed_of_val. - unfold eval_path=>? /of_to_val <-. apply is_closed_of_val.
- simpl. destruct (eval_path p) as [[[]|]|]; intros ? [= <-]. - simpl. destruct (eval_path p) as [[[]|]|]; intros ? [= <-].
specialize (IH _ eq_refl). apply _. specialize (IH _ eq_refl). apply _.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment