Skip to content
Snippets Groups Projects
Commit 538fee6f authored by Ralf Jung's avatar Ralf Jung
Browse files

rename mgmtE -> lftE

parent 0db3bed9
No related branches found
No related tags found
No related merge requests found
Pipeline #
......@@ -52,7 +52,7 @@ Section own.
freeable_sz n ty.(ty_size) l)%I;
ty_shr κ tid E l :=
( l':loc, &frac{κ}(λ q', l {q'} #l')
( F q, E mgmtE F -∗ q.[κ] ={F,FE∖↑lftN}▷=∗ ty.(ty_shr) κ tid E l' q.[κ]))%I
( F q, E lftE F -∗ q.[κ] ={F,FE∖↑lftN}▷=∗ ty.(ty_shr) κ tid E l' q.[κ]))%I
|}.
Next Obligation.
iIntros (q ty tid vl) "H". iDestruct "H" as (l) "[% _]". by subst.
......
......@@ -10,7 +10,7 @@ Class typeG Σ := TypeG {
type_frac_borrowG Σ :> frac_borG Σ
}.
Definition mgmtE := lftN.
Definition lftE := lftN.
Definition lrustN := nroot .@ "lrust".
Section type.
......@@ -39,7 +39,7 @@ Section type.
nicer (they would otherwise require a "∨ □|=>[†κ]"), and (b) so that
we can have emp == sum [].
*)
ty_share E N κ l tid q : mgmtE N mgmtE E
ty_share E N κ l tid q : lftE N lftE E
lft_ctx -∗ &{κ} (l ↦∗: ty_own tid) -∗ q.[κ] ={E}=∗
ty_shr κ tid (N) l q.[κ];
ty_shr_mono κ κ' tid E E' l : E E'
......@@ -50,7 +50,7 @@ Section type.
Class Copy (t : type) := {
copy_persistent tid vl : PersistentP (t.(ty_own) tid vl);
copy_shr_acc κ tid E F l q :
mgmtE F E
lftE F E
lft_ctx -∗ t.(ty_shr) κ tid F l -∗
q.[κ] na_own tid F ={E}=∗ q', l ↦∗{q'}: t.(ty_own) tid
(l ↦∗{q'}: t.(ty_own) tid ={E}=∗ q.[κ] na_own tid F)
......
......@@ -80,7 +80,7 @@ Section typing.
Qed.
Definition consumes (ty : type) (ρ1 ρ2 : expr perm) : Prop :=
ν tid Φ E, mgmtE lrustN E
ν tid Φ E, lftE lrustN E
lft_ctx -∗ ρ1 ν tid -∗ na_own tid -∗
( (l:loc) vl q,
(length vl = ty.(ty_size) eval_expr ν = Some #l l ↦∗{q} vl
......@@ -100,7 +100,7 @@ Section typing.
Qed.
Definition update (ty : type) (ρ1 ρ2 : expr perm) : Prop :=
ν tid Φ E, mgmtE (lrustN) E
ν tid Φ E, lftE (lrustN) E
lft_ctx -∗ ρ1 ν tid -∗
( (l:loc) vl,
(length vl = ty.(ty_size) eval_expr ν = Some #l l ↦∗ vl
......
......@@ -16,7 +16,7 @@ Section uniq_bor.
( (l:loc) P, (vl = [ #l ] (P l ↦∗: ty.(ty_own) tid)) &{κ} P)%I;
ty_shr κ' tid E l :=
( l':loc, &frac{κ'}(λ q', l {q'} #l')
F q, E mgmtE F -∗ q.[κκ']
F q, E lftE F -∗ q.[κκ']
={F, FE∖↑lftN}▷=∗ ty.(ty_shr) (κκ') tid E l' q.[κκ'])%I
|}.
Next Obligation.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment