Skip to content
Snippets Groups Projects
Commit 4c39e2fa authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

Borrowing and reborrowing. Also removed some old stuff.

parent 373d4ada
No related branches found
No related tags found
No related merge requests found
Pipeline #
...@@ -48,9 +48,6 @@ Section perm. ...@@ -48,9 +48,6 @@ Section perm.
Global Instance perm_equiv : Equiv perm := Global Instance perm_equiv : Equiv perm :=
λ ρ1 ρ2, perm_incl ρ1 ρ2 perm_incl ρ2 ρ1. λ ρ1 ρ2, perm_incl ρ1 ρ2 perm_incl ρ2 ρ1.
Definition borrowing κ (ρ ρ1 ρ2 : perm) :=
tid, lft_ctx -∗ ρ tid -∗ ρ1 tid ={}=∗ ρ2 tid extract κ ρ1 tid.
End perm. End perm.
Delimit Scope perm_scope with P. Delimit Scope perm_scope with P.
...@@ -177,21 +174,4 @@ Section perm_incl. ...@@ -177,21 +174,4 @@ Section perm_incl.
Lemma perm_lftincl_trans κ1 κ2 κ3 : κ1 κ2 κ2 κ3 κ1 κ3. Lemma perm_lftincl_trans κ1 κ2 κ3 : κ1 κ2 κ2 κ3 κ1 κ3.
Proof. iIntros (tid) "_ [#?#?]!>". iApply (lft_incl_trans with "[] []"); auto. Qed. Proof. iIntros (tid) "_ [#?#?]!>". iApply (lft_incl_trans with "[] []"); auto. Qed.
Lemma borrowing_perm_incl κ ρ ρ1 ρ2 θ :
borrowing κ ρ ρ1 ρ2 ρ κ θ ρ1 ρ2 κ (θ ρ1).
Proof.
iIntros (Hbor tid) "LFT (Hρ&Hθ&Hρ1)". iMod (Hbor with "LFT Hρ Hρ1") as "[$ Hρ1]".
iIntros "!>#H†". iSplitL "Hθ". by iApply "Hθ". by iApply "Hρ1".
Qed.
Lemma lftincl_borrowing κ κ' q : borrowing κ q.[κ'] (κ κ').
Proof.
iIntros (tid) "#LFT _ Htok". iApply (fupd_mask_mono (lftN)). done.
iMod (bor_create with "LFT [$Htok]") as "[Hbor Hclose]". done.
iMod (bor_fracture (λ q', (q * q').[κ'])%I with "LFT [Hbor]") as "Hbor". done.
{ by rewrite Qp_mult_1_r. }
iSplitL "Hbor". iApply (frac_bor_lft_incl with "LFT Hbor").
iIntros "!>H". by iMod ("Hclose" with "H") as ">$".
Qed.
End perm_incl. End perm_incl.
...@@ -49,14 +49,18 @@ Section typing. ...@@ -49,14 +49,18 @@ Section typing.
iIntros "!>/=". eauto. iIntros "!>/=". eauto.
Qed. Qed.
Lemma rebor_shr_perm_incl κ κ' ν ty : Lemma tctx_reborrow_shr E L p ty κ κ' :
κ κ' ν &shr{κ'}ty ν &shr{κ}ty. incl E L κ' κ
tctx_incl E L [TCtx_holds p (&shr{κ}ty)]
[TCtx_holds p (&shr{κ'}ty); TCtx_guarded p κ (&shr{κ}ty)].
Proof. Proof.
iIntros (tid) "#LFT [#Hord #Hκ']". unfold has_type. iIntros (Hκκ' tid) "#LFT #HE #HL H". iDestruct (Hκκ' with "HE HL") as "Hκκ'".
destruct (eval_expr ν) as [[[|l|]|]|]; rewrite /tctx_interp big_sepL_singleton big_sepL_cons big_sepL_singleton.
try by (iDestruct "Hκ'" as "[]" || iDestruct "Hκ'" as (l) "[% _]"). iDestruct "H" as (v) "[% #H]". iDestruct "H" as (l) "[EQ Hshr]".
iDestruct "Hκ'" as (l') "[EQ Hκ']". iDestruct "EQ" as %[=]. subst l'. iDestruct "EQ" as %[=->]. simpl. iModIntro. iSplit.
iModIntro. iExists _. iSplit. done. by iApply (ty_shr_mono with "LFT Hord Hκ'"). - iExists _. iSplit. done. iExists _. iSplit. done.
by iApply (ty_shr_mono with "LFT Hκκ' Hshr").
- iExists _. iSplit. done. iIntros "_". eauto.
Qed. Qed.
Lemma consumes_copy_shr_bor ty κ κ' q: Lemma consumes_copy_shr_bor ty κ κ' q:
......
...@@ -28,7 +28,7 @@ Section type_context. ...@@ -28,7 +28,7 @@ Section type_context.
match x with match x with
| TCtx_holds p ty => v, eval_path p = Some v ty.(ty_own) tid [v] | TCtx_holds p ty => v, eval_path p = Some v ty.(ty_own) tid [v]
| TCtx_guarded p κ ty => v, eval_path p = Some v | TCtx_guarded p κ ty => v, eval_path p = Some v
E, ⌜↑lftN E -∗ [κ] ={E}=∗ ty.(ty_own) tid [v] ([κ] ={}=∗ ty.(ty_own) tid [v])
end%I. end%I.
Definition tctx_interp (tid : thread_id) (T : tctx) : iProp Σ := Definition tctx_interp (tid : thread_id) (T : tctx) : iProp Σ :=
([ list] x T, tctx_elt_interp tid x)%I. ([ list] x T, tctx_elt_interp tid x)%I.
...@@ -83,25 +83,25 @@ Section type_context. ...@@ -83,25 +83,25 @@ Section type_context.
| _ => x | _ => x
end. end.
Lemma deguard_tctx_elt_interp tid E κ x : Lemma deguard_tctx_elt_interp tid κ x :
lftN E [κ] -∗ tctx_elt_interp tid x ={E}=∗ [κ] -∗ tctx_elt_interp tid x ={}=∗
tctx_elt_interp tid (deguard_tctx_elt κ x). tctx_elt_interp tid (deguard_tctx_elt κ x).
Proof. Proof.
iIntros (?) "H† H". destruct x as [|? κ' ?]; simpl. by auto. iIntros "H† H". destruct x as [|? κ' ?]; simpl. by auto.
destruct (decide (κ = κ')) as [->|]; simpl; last by auto. destruct (decide (κ = κ')) as [->|]; simpl; last by auto.
iDestruct "H" as (v) "[% H]". iExists v. iSplitR. by auto. iDestruct "H" as (v) "[% H]". iExists v. iSplitR. by auto.
by iApply ("H" with "[] H†"). by iApply ("H" with "H†").
Qed. Qed.
Definition deguard_tctx κ (T : tctx) : tctx := Definition deguard_tctx κ (T : tctx) : tctx :=
deguard_tctx_elt κ <$> T. deguard_tctx_elt κ <$> T.
Lemma deguard_tctx_interp tid E κ T : Lemma deguard_tctx_interp tid κ T :
lftN E [κ] -∗ tctx_interp tid T ={E}=∗ [κ] -∗ tctx_interp tid T ={}=∗
tctx_interp tid (deguard_tctx κ T). tctx_interp tid (deguard_tctx κ T).
Proof. Proof.
iIntros (?) "#H† H". rewrite /tctx_interp big_sepL_fmap. iIntros "#H† H". rewrite /tctx_interp big_sepL_fmap.
iApply (big_opL_forall (λ P Q, [κ] -∗ P ={E}=∗ Q) with "H† H"). iApply (big_opL_forall (λ P Q, [κ] -∗ P ={}=∗ Q) with "H† H").
{ by iIntros (?) "_ $". } { by iIntros (?) "_ $". }
{ iIntros (?? A ?? B) "#H† [H1 H2]". iSplitL "H1". { iIntros (?? A ?? B) "#H† [H1 H2]". iSplitL "H1".
by iApply (A with "H†"). by iApply (B with "H†"). } by iApply (A with "H†"). by iApply (B with "H†"). }
......
From iris.proofmode Require Import tactics. From iris.proofmode Require Import tactics.
From iris.base_logic Require Import big_op.
From lrust.lifetime Require Import borrow reborrow frac_borrow. From lrust.lifetime Require Import borrow reborrow frac_borrow.
From lrust.lang Require Import heap. From lrust.lang Require Import heap.
From lrust.typing Require Export type. From lrust.typing Require Export type.
From lrust.typing Require Import perm lft_contexts typing own. From lrust.typing Require Import perm lft_contexts type_context typing own.
Section uniq_bor. Section uniq_bor.
Context `{typeG Σ}. Context `{typeG Σ}.
...@@ -102,33 +103,34 @@ Notation "&uniq{ κ } ty" := (uniq_bor κ ty) ...@@ -102,33 +103,34 @@ Notation "&uniq{ κ } ty" := (uniq_bor κ ty)
Section typing. Section typing.
Context `{typeG Σ}. Context `{typeG Σ}.
Lemma own_uniq_borrowing ν q ty κ : Lemma tctx_borrow E L p n ty κ :
borrowing κ (ν own q ty) (ν &uniq{κ} ty). tctx_incl E L [TCtx_holds p (own n ty)]
[TCtx_holds p (&uniq{κ}ty); TCtx_guarded p κ (own n ty)].
Proof. Proof.
iIntros (tid) "#LFT _ Hown". unfold has_type. iIntros (tid) "#LFT _ _ H".
destruct (eval_expr ν) as [[[|l|]|]|]; rewrite /tctx_interp big_sepL_singleton big_sepL_cons big_sepL_singleton.
try by (iDestruct "Hown" as "[]" || iDestruct "Hown" as (l) "[% _]"). iDestruct "H" as (v) "[% Hown]". iDestruct "Hown" as (l) "(EQ & Hmt & ?)".
iDestruct "Hown" as (l') "[EQ [Hown Hf]]". iDestruct "EQ" as %[=]. subst l'. iDestruct "EQ" as %[=->]. iMod (bor_create with "LFT Hmt") as "[Hbor Hext]". done.
iApply (fupd_mask_mono (lftN)). done. iModIntro. iSplitL "Hbor".
iMod (bor_create with "LFT Hown") as "[Hbor Hext]". done. iSplitL "Hbor". - iExists _. iSplit. done. iExists _, _. erewrite <-uPred.iff_refl. eauto.
{ iExists _, _. erewrite <-uPred.iff_refl. auto. } - iExists _. iSplit. done. iIntros "H†". iExists _. iFrame. iSplitR. by eauto.
iIntros "!>#H†". iExists _. iMod ("Hext" with "H†") as "$". by iFrame. by iMod ("Hext" with "H†") as "$".
Qed. Qed.
Lemma rebor_uniq_borrowing κ κ' ν ty : Lemma tctx_reborrow_uniq E L p ty κ κ' :
borrowing κ (κ κ') (ν &uniq{κ'}ty) (ν &uniq{κ}ty). incl E L κ' κ
tctx_incl E L [TCtx_holds p (&uniq{κ}ty)]
[TCtx_holds p (&uniq{κ'}ty); TCtx_guarded p κ (&uniq{κ}ty)].
Proof. Proof.
iIntros (tid) "#LFT #Hord H". unfold has_type. iIntros (Hκκ' tid) "#LFT #HE #HL H". iDestruct (Hκκ' with "HE HL") as "Hκκ'".
destruct (eval_expr ν) as [[[|l|]|]|]; rewrite /tctx_interp big_sepL_singleton big_sepL_cons big_sepL_singleton.
try by (iDestruct "H" as "[]" || iDestruct "H" as (l P) "[[% _] _]"). iDestruct "H" as (v) "[% Hown]". iDestruct "Hown" as (l P) "[[EQ #Hiff] Hb]".
iDestruct "H" as (l' P) "[[EQ #HPiff] H]". iDestruct "EQ" as %[=]. subst l'. iDestruct "EQ" as %[=->]. iMod (bor_iff with "LFT [] Hb") as "Hb". done. by eauto.
iApply (fupd_mask_mono (lftN)). done. iMod (rebor with "LFT Hκκ' Hb") as "[Hb Hext]". done. iModIntro. iSplitL "Hb".
iMod (bor_iff with "LFT [] H") as "H". done. by eauto. - iExists _. iSplit. done. iExists _, _. erewrite <-uPred.iff_refl. eauto.
iMod (rebor with "LFT Hord H") as "[H Hextr]". done. - iExists _. iSplit. done. iIntros "#H†".
iModIntro. iSplitL "H". iMod ("Hext" with ">[]") as "Hb". by iApply (lft_incl_dead with "Hκκ' H†").
- iExists _, _. erewrite <-uPred.iff_refl. auto. iExists _, _. erewrite <-uPred.iff_refl. eauto.
- iIntros "H†". iExists _, _. iMod ("Hextr" with "H†") as "$".
iSplitR. done. iIntros "!>!#". apply uPred.iff_refl.
Qed. Qed.
Lemma consumes_copy_uniq_bor `(!Copy ty) κ κ' q: Lemma consumes_copy_uniq_bor `(!Copy ty) κ κ' q:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment