Skip to content
Snippets Groups Projects
Commit 380be93b authored by Ralf Jung's avatar Ralf Jung
Browse files

fix deprecation warnings: name fixpoints in tactics

parent a1fddd3b
No related branches found
No related tags found
No related merge requests found
Pipeline #
......@@ -484,7 +484,7 @@ Qed.
(** Closed expressions *)
Lemma is_closed_weaken X Y e : is_closed X e X Y is_closed Y e.
Proof.
revert e X Y. fix 1; destruct e=>X Y/=; try naive_solver.
revert e X Y. fix FIX 1; destruct e=>X Y/=; try naive_solver.
- naive_solver set_solver.
- rewrite !andb_True. intros [He Hel] HXY. split. by eauto.
induction el=>/=; naive_solver.
......@@ -497,7 +497,7 @@ Proof. intros. by apply is_closed_weaken with [], list_subseteq_nil. Qed.
Lemma is_closed_subst X e x es : is_closed X e x X subst x es e = e.
Proof.
revert e X. fix 1; destruct e=> X /=; rewrite ?bool_decide_spec ?andb_True=> He ?;
revert e X. fix FIX 1; destruct e=> X /=; rewrite ?bool_decide_spec ?andb_True=> He ?;
repeat case_bool_decide; simplify_eq/=; f_equal;
try by intuition eauto with set_solver.
- case He=> _. clear He. induction el=>//=. rewrite andb_True=>?.
......@@ -518,7 +518,7 @@ Proof. intros <-%of_to_val. apply is_closed_of_val. Qed.
Lemma subst_is_closed X x es e :
is_closed X es is_closed (x::X) e is_closed X (subst x es e).
Proof.
revert e X. fix 1; destruct e=>X //=; repeat (case_bool_decide=>//=);
revert e X. fix FIX 1; destruct e=>X //=; repeat (case_bool_decide=>//=);
try naive_solver; rewrite ?andb_True; intros.
- set_solver.
- eauto using is_closed_weaken with set_solver.
......@@ -591,19 +591,19 @@ Fixpoint expr_beq (e : expr) (e' : expr) : bool :=
end.
Lemma expr_beq_correct (e1 e2 : expr) : expr_beq e1 e2 e1 = e2.
Proof.
revert e1 e2; fix 1;
revert e1 e2; fix FIX 1.
destruct e1 as [| | | |? el1| | | | | |? el1|],
e2 as [| | | |? el2| | | | | |? el2|]; simpl; try done;
rewrite ?andb_True ?bool_decide_spec ?expr_beq_correct;
rewrite ?andb_True ?bool_decide_spec ?FIX;
try (split; intro; [destruct_and?|split_and?]; congruence).
- match goal with |- context [?F el1 el2] => assert (F el1 el2 el1 = el2) end.
{ revert el2. induction el1 as [|el1h el1q]; destruct el2; try done.
specialize (expr_beq_correct el1h). naive_solver. }
clear expr_beq_correct. naive_solver.
specialize (FIX el1h). naive_solver. }
clear FIX. naive_solver.
- match goal with |- context [?F el1 el2] => assert (F el1 el2 el1 = el2) end.
{ revert el2. induction el1 as [|el1h el1q]; destruct el2; try done.
specialize (expr_beq_correct el1h). naive_solver. }
clear expr_beq_correct. naive_solver.
specialize (FIX el1h). naive_solver. }
clear FIX. naive_solver.
Qed.
Instance expr_dec_eq : EqDecision expr.
Proof.
......
......@@ -87,7 +87,7 @@ Fixpoint is_closed (X : list string) (e : expr) : bool :=
end.
Lemma is_closed_correct X e : is_closed X e lang.is_closed X (to_expr e).
Proof.
revert e X. fix 1; destruct e=>/=;
revert e X. fix FIX 1; destruct e=>/=;
try naive_solver eauto using is_closed_to_val, is_closed_weaken_nil.
- induction el=>/=; naive_solver.
- induction el=>/=; naive_solver.
......@@ -138,7 +138,7 @@ Fixpoint subst (x : string) (es : expr) (e : expr) : expr :=
Lemma to_expr_subst x er e :
to_expr (subst x er e) = lang.subst x (to_expr er) (to_expr e).
Proof.
revert e x er. fix 1; destruct e=>/= ? er; repeat case_bool_decide;
revert e x er. fix FIX 1; destruct e=>/= ? er; repeat case_bool_decide;
f_equal; eauto using is_closed_nil_subst, is_closed_to_val, eq_sym.
- induction el=>//=. f_equal; auto.
- induction el=>//=. f_equal; auto.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment