Skip to content
Snippets Groups Projects
Commit 2ca1ee4a authored by Ralf Jung's avatar Ralf Jung
Browse files

complete unnesting. this completes the lifetime logic :D

parent e2c98f5c
No related branches found
No related tags found
No related merge requests found
Pipeline #
...@@ -54,24 +54,6 @@ Proof. ...@@ -54,24 +54,6 @@ Proof.
rewrite -insert_delete big_sepM_insert ?lookup_delete //. simpl. by iFrame. rewrite -insert_delete big_sepM_insert ?lookup_delete //. simpl. by iFrame.
Qed. Qed.
Lemma create_dead A κ:
lft_dead_in A κ
own_alft_auth A ==∗ own_alft_auth A [κ].
Proof.
iIntros ((Λ & HΛκ & EQΛ)) "HA". unfold own_alft_auth, lft_dead.
iMod (own_update _ (( to_alftUR A)) with "HA") as "HA".
{ eapply (auth_update_alloc _ _ ({[Λ := Cinr ()]}⋅∅)), op_local_update_discrete=>HA Λ'.
specialize (HA Λ'). revert HA.
rewrite lookup_op lookup_fmap. destruct (decide (Λ = Λ')) as [<-|].
- by rewrite lookup_singleton EQΛ.
- rewrite lookup_singleton_ne //. by destruct (to_lft_stateR <$> A !! Λ'). }
rewrite right_id. iDestruct "HA" as "[HA HΛ]". iSplitL "HA"; last (iExists _; by iFrame).
assert ({[Λ := Cinr ()]} to_alftUR A to_alftUR A) as ->; last done.
intros Λ'. rewrite lookup_op. destruct (decide (Λ = Λ')) as [<-|].
- by rewrite lookup_singleton lookup_fmap EQΛ.
- rewrite lookup_singleton_ne //. by case: (to_alftUR A !! Λ').
Qed.
Lemma add_vs Pb Pb' P Q Pi κ : Lemma add_vs Pb Pb' P Q Pi κ :
(Pb (P Pb')) -∗ lft_vs κ Pb Pi -∗ ( Q -∗ [κ] ={⊤∖↑lftN}=∗ P) -∗ (Pb (P Pb')) -∗ lft_vs κ Pb Pi -∗ ( Q -∗ [κ] ={⊤∖↑lftN}=∗ P) -∗
lft_vs κ (Q Pb') Pi. lft_vs κ (Q Pb') Pi.
...@@ -122,7 +104,7 @@ Proof. ...@@ -122,7 +104,7 @@ Proof.
as %[(_ & <- & INCL%option_included)%singleton_included _]%auth_valid_discrete_2. as %[(_ & <- & INCL%option_included)%singleton_included _]%auth_valid_discrete_2.
by destruct INCL as [[=]|(? & ? & [=<-] & by destruct INCL as [[=]|(? & ? & [=<-] &
[[_<-]%lookup_to_gmap_Some [[_[=]]|[]%(exclusive_included _)]])]. [[_<-]%lookup_to_gmap_Some [[_[=]]|[]%(exclusive_included _)]])].
- iMod (create_dead with "HA") as "[_ H†]". done. - iMod (lft_dead_in_tok with "HA") as "[_ H†]". done.
iDestruct (lft_tok_dead with "Htok H†") as "[]". iDestruct (lft_tok_dead with "Htok H†") as "[]".
Qed. Qed.
...@@ -152,7 +134,7 @@ Proof. ...@@ -152,7 +134,7 @@ Proof.
iApply "Hclose''". iLeft. iFrame "%". iExists _, _. iFrame. iApply "Hclose''". iLeft. iFrame "%". iExists _, _. iFrame.
iExists _. iFrame. iExists _. iFrame.
rewrite insert_insert -(fmap_insert _ _ _ Bor_in) insert_id //. rewrite insert_insert -(fmap_insert _ _ _ Bor_in) insert_id //.
- iRight. iMod (create_dead with "HA") as "[HA #H†]". done. - iRight. iMod (lft_dead_in_tok with "HA") as "[HA #H†]". done.
iMod ("Hclose'" with "[-Hbor]") as "_". iMod ("Hclose'" with "[-Hbor]") as "_".
+ iExists _, _. iFrame. rewrite big_sepS_later. iApply "Hclose''". eauto. + iExists _, _. iFrame. rewrite big_sepS_later. iApply "Hclose''". eauto.
+ iMod (lft_incl_dead with "Hle H†"). done. iFrame. + iMod (lft_incl_dead with "Hle H†"). done. iFrame.
...@@ -219,7 +201,7 @@ Proof. ...@@ -219,7 +201,7 @@ Proof.
as %[(_ & <- & INCL%option_included)%singleton_included _]%auth_valid_discrete_2. as %[(_ & <- & INCL%option_included)%singleton_included _]%auth_valid_discrete_2.
by destruct INCL as [[=]|(? & ? & [=<-] & by destruct INCL as [[=]|(? & ? & [=<-] &
[[_<-]%lookup_to_gmap_Some [[_[=]]|[]%(exclusive_included _)]])]. [[_<-]%lookup_to_gmap_Some [[_[=]]|[]%(exclusive_included _)]])].
- iMod (create_dead with "HA") as "[_ H†]". done. - iMod (lft_dead_in_tok with "HA") as "[_ H†]". done.
iDestruct (lft_tok_dead with "Htok H†") as "[]". iDestruct (lft_tok_dead with "Htok H†") as "[]".
Qed. Qed.
...@@ -265,7 +247,7 @@ Proof. ...@@ -265,7 +247,7 @@ Proof.
iExists _. iFrame "Hbox H●". iExists _. iFrame "Hbox H●".
rewrite big_sepM_insert. by rewrite big_sepM_delete. rewrite big_sepM_insert. by rewrite big_sepM_delete.
by rewrite -fmap_None -lookup_fmap fmap_delete. by rewrite -fmap_None -lookup_fmap fmap_delete.
- iRight. iMod (create_dead with "HA") as "[HA #H†]". done. - iRight. iMod (lft_dead_in_tok with "HA") as "[HA #H†]". done.
iMod ("Hclose'" with "[-Hbor]") as "_". iMod ("Hclose'" with "[-Hbor]") as "_".
+ iExists _, _. iFrame. rewrite big_sepS_later. iApply "Hclose''". eauto. + iExists _, _. iFrame. rewrite big_sepS_later. iApply "Hclose''". eauto.
+ iMod (lft_incl_dead with "Hle H†") as "$". done. + iMod (lft_incl_dead with "Hle H†") as "$". done.
...@@ -318,4 +300,4 @@ Proof. ...@@ -318,4 +300,4 @@ Proof.
- iLeft. iIntros "!> {$HP} HP". iMod ("Hclose" with "* HP []"); auto. - iLeft. iIntros "!> {$HP} HP". iMod ("Hclose" with "* HP []"); auto.
- iRight. by iFrame. - iRight. by iFrame.
Qed. Qed.
End accessors. End accessors.
\ No newline at end of file
...@@ -202,6 +202,29 @@ Proof. ...@@ -202,6 +202,29 @@ Proof.
Qed. Qed.
Lemma lft_dead_in_insert_false' A κ Λ : Λ κ lft_dead_in (<[Λ:=false]> A) κ. Lemma lft_dead_in_insert_false' A κ Λ : Λ κ lft_dead_in (<[Λ:=false]> A) κ.
Proof. exists Λ. by rewrite lookup_insert. Qed. Proof. exists Λ. by rewrite lookup_insert. Qed.
Lemma lft_dead_in_alive_in_union A κ κ' :
lft_dead_in A (κ κ') lft_alive_in A κ lft_dead_in A κ'.
Proof.
intros (Λ & [Hin|Hin]%elem_of_union & ) Halive.
- contradict . rewrite (Halive _ Hin). done.
- exists Λ. auto.
Qed.
Lemma lft_dead_in_tok A κ:
lft_dead_in A κ
own_alft_auth A ==∗ own_alft_auth A [κ].
Proof.
iIntros ((Λ & HΛκ & EQΛ)) "HA". unfold own_alft_auth, lft_dead.
assert (({[Λ := Cinr ()]} to_alftUR A) = to_alftUR A) as HAinsert.
{ unfold_leibniz=>Λ'. destruct (decide (Λ = Λ')) as [<-|Hne].
+ rewrite lookup_op lookup_fmap EQΛ lookup_singleton /=. done.
+ rewrite lookup_op lookup_fmap !lookup_insert_ne // lookup_empty left_id -lookup_fmap. done. }
iMod (own_update _ (( to_alftUR A)) with "HA") as "HA".
{ eapply (auth_update_alloc _ _ ({[Λ := Cinr ()]}⋅∅)), op_local_update_discrete.
by rewrite HAinsert. }
rewrite right_id. iDestruct "HA" as "[HA HΛ]". iSplitL "HA"; last (iExists _; by iFrame).
by rewrite HAinsert.
Qed.
Lemma lft_inv_alive_twice κ : lft_inv_alive κ -∗ lft_inv_alive κ -∗ False. Lemma lft_inv_alive_twice κ : lft_inv_alive κ -∗ lft_inv_alive κ -∗ False.
Proof. Proof.
...@@ -349,11 +372,23 @@ Proof. ...@@ -349,11 +372,23 @@ Proof.
rewrite /idx_bor. iIntros "#Hκκ' [#? $]". by iApply (lft_incl_trans with "Hκκ'"). rewrite /idx_bor. iIntros "#Hκκ' [#? $]". by iApply (lft_incl_trans with "Hκκ'").
Qed. Qed.
Lemma raw_bor_inI I κ P :
own_ilft_auth I -∗ raw_bor κ P -∗ is_Some (I !! κ)⌝.
Proof.
iIntros "HI Hbor". rewrite /raw_bor /idx_bor_own. iDestruct "Hbor" as (?) "[Hbor _]".
iApply (own_bor_auth with "HI Hbor").
Qed.
(* Inheritance *) (* Inheritance *)
Lemma lft_inh_extend E κ P Q : Lemma lft_inh_extend E κ P Q :
inhN E inhN E
lft_inh κ false Q ={E}=∗ lft_inh κ false (P Q) lft_inh κ false Q ={E}=∗ lft_inh κ false (P Q)
(* This states that κ will henceforth always be allocated.
That's not at all related to extending the inheritance,
but it's useful to have it here. *)
( I, own_ilft_auth I -∗ is_Some (I !! κ)) ( I, own_ilft_auth I -∗ is_Some (I !! κ))
(* This is the extraction: Always in the future, we can get
▷ P from whatever lft_inh is at the time. *)
( Q', lft_inh κ true Q' ={E}=∗ Q'', ( Q', lft_inh κ true Q' ={E}=∗ Q'',
(Q' (P Q'')) P lft_inh κ true Q''). (Q' (P Q'')) P lft_inh κ true Q'').
Proof. Proof.
...@@ -402,4 +437,19 @@ Proof. ...@@ -402,4 +437,19 @@ Proof.
iExists n. iFrame "Hcnt". iIntros (I'') "Hinv [$ HPb] H†". iExists n. iFrame "Hcnt". iIntros (I'') "Hinv [$ HPb] H†".
iApply ("Hvs" $! I'' with "Hinv HPb H†"). iApply ("Hvs" $! I'' with "Hinv HPb H†").
Qed. Qed.
(* TODO RJ: Are there still places where this lemma
is re-proven inline? *)
Lemma lft_vs_cons q κ Pb Pb' Pi :
(lft_bor_dead κ Pb' ={ mgmtN}=∗ lft_bor_dead κ Pb) -∗
?q lft_vs κ Pb Pi -∗ ?q lft_vs κ Pb' Pi.
Proof.
iIntros "Hcons Hvs". iNext. rewrite !lft_vs_unfold.
iDestruct "Hvs" as (n) "[Hn● Hvs]". iExists n. iFrame "Hn●".
iIntros (I). rewrite {1}lft_vs_inv_unfold.
iIntros "(Hdead & Hinv & Hκs) HPb #Hκ†".
iMod ("Hcons" with "[$Hdead $HPb]") as "[Hdead HPb]".
iApply ("Hvs" $! I with "[Hdead Hinv Hκs] HPb Hκ†").
rewrite lft_vs_inv_unfold. by iFrame.
Qed.
End primitive. End primitive.
...@@ -13,14 +13,14 @@ Implicit Types κ : lft. ...@@ -13,14 +13,14 @@ Implicit Types κ : lft.
κ ≠ κ'. Still, it is probably more instructing to require κ ≠ κ'. Still, it is probably more instructing to require
κ ⊂ κ' in this lemma (as opposed to just κ ⊆ κ'), and it κ ⊂ κ' in this lemma (as opposed to just κ ⊆ κ'), and it
should not increase the burden on the user. *) should not increase the burden on the user. *)
Lemma raw_bor_unnest E A I Pb Pi P κ i κ' : Lemma raw_bor_unnest E q A I Pb Pi P κ i κ' :
borN E borN E
let Iinv := (own_ilft_auth I lft_inv A κ)%I in let Iinv := (own_ilft_auth I ?q lft_inv A κ)%I in
κ κ' κ κ'
lft_alive_in A κ' lft_alive_in A κ'
Iinv -∗ idx_bor_own 1 (κ, i) -∗ slice borN i P -∗ lft_bor_alive κ' Pb -∗ Iinv -∗ idx_bor_own 1 (κ, i) -∗ slice borN i P -∗ ?q lft_bor_alive κ' Pb -∗
lft_vs κ' (idx_bor_own 1 (κ, i) Pb) Pi ={E}=∗ Pb', ?q lft_vs κ' (idx_bor_own 1 (κ, i) Pb) Pi ={E}=∗ Pb',
Iinv raw_bor κ' P lft_bor_alive κ' Pb' lft_vs κ' Pb' Pi. Iinv raw_bor κ' P ?q lft_bor_alive κ' Pb' ?q lft_vs κ' Pb' Pi.
Proof. Proof.
iIntros (? Iinv Hκκ' Haliveκ') "(HI & Hκ) Hi #Hislice Hκalive' Hvs". iIntros (? Iinv Hκκ' Haliveκ') "(HI & Hκ) Hi #Hislice Hκalive' Hvs".
rewrite lft_vs_unfold. iDestruct "Hvs" as (n) "[>Hn● Hvs]". rewrite lft_vs_unfold. iDestruct "Hvs" as (n) "[>Hn● Hvs]".
...@@ -36,13 +36,13 @@ Proof. ...@@ -36,13 +36,13 @@ Proof.
rewrite {2}/lft_bor_alive; iDestruct "Hκalive" as (B) "(Hbox & >HB● & HB)". rewrite {2}/lft_bor_alive; iDestruct "Hκalive" as (B) "(Hbox & >HB● & HB)".
iDestruct (own_bor_valid_2 with "HB● Hi") iDestruct (own_bor_valid_2 with "HB● Hi")
as %[HB%to_borUR_included _]%auth_valid_discrete_2. as %[HB%to_borUR_included _]%auth_valid_discrete_2.
iMod (slice_empty _ _ true with "Hislice Hbox") as "[HP Hbox]"; first done. iMod (slice_empty with "Hislice Hbox") as "[HP Hbox]"; first done.
{ by rewrite lookup_fmap HB. } { by rewrite lookup_fmap HB. }
iMod (own_bor_update_2 with "HB● Hi") as "[HB● Hi]". iMod (own_bor_update_2 with "HB● Hi") as "[HB● Hi]".
{ eapply auth_update, singleton_local_update, { eapply auth_update, singleton_local_update,
(exclusive_local_update _ (1%Qp, DecAgree (Bor_rebor κ'))); last done. (exclusive_local_update _ (1%Qp, DecAgree (Bor_rebor κ'))); last done.
rewrite /to_borUR lookup_fmap. by rewrite HB. } rewrite /to_borUR lookup_fmap. by rewrite HB. }
iAssert ( lft_inv A κ)%I with "[H◯ HB● HB Hvs' Hinh' Hbox]" as "Hκ". iAssert (?q lft_inv A κ)%I with "[H◯ HB● HB Hvs' Hinh' Hbox]" as "Hκ".
{ iNext. rewrite /lft_inv. iLeft. { iNext. rewrite /lft_inv. iLeft.
iSplit; last by eauto using lft_alive_in_subseteq. iSplit; last by eauto using lft_alive_in_subseteq.
rewrite lft_inv_alive_unfold. iExists Pb', Pi'. iFrame "Hvs' Hinh'". rewrite lft_inv_alive_unfold. iExists Pb', Pi'. iFrame "Hvs' Hinh'".
...@@ -53,7 +53,7 @@ Proof. ...@@ -53,7 +53,7 @@ Proof.
rewrite -insert_delete delete_insert ?lookup_delete //=. iFrame; auto. } rewrite -insert_delete delete_insert ?lookup_delete //=. iFrame; auto. }
clear B HB Pb' Pi'. clear B HB Pb' Pi'.
rewrite {1}/lft_bor_alive. iDestruct "Hκalive'" as (B) "(Hbox & >HB● & HB)". rewrite {1}/lft_bor_alive. iDestruct "Hκalive'" as (B) "(Hbox & >HB● & HB)".
iMod (slice_insert_full _ _ true with "HP Hbox") iMod (slice_insert_full with "HP Hbox")
as (j) "(HBj & #Hjslice & Hbox)"; first done. as (j) "(HBj & #Hjslice & Hbox)"; first done.
iDestruct "HBj" as %HBj; move: HBj; rewrite lookup_fmap fmap_None=> HBj. iDestruct "HBj" as %HBj; move: HBj; rewrite lookup_fmap fmap_None=> HBj.
iMod (own_bor_update with "HB●") as "[HB● Hj]". iMod (own_bor_update with "HB●") as "[HB● Hj]".
...@@ -100,6 +100,36 @@ Proof. ...@@ -100,6 +100,36 @@ Proof.
by iFrame. by iFrame.
Qed. Qed.
Lemma raw_bor_unnest' E q A I Pb Pi P κ κ' :
borN E
let Iinv := (
own_ilft_auth I
?q [ set] κ dom _ I {[κ']}, lft_inv A κ)%I in
κ κ'
lft_alive_in A κ'
Iinv -∗ raw_bor κ P -∗ ?q lft_bor_alive κ' Pb -∗
?q lft_vs κ' (raw_bor κ P Pb) Pi ={E}=∗ Pb',
Iinv raw_bor κ' P ?q lft_bor_alive κ' Pb' ?q lft_vs κ' Pb' Pi.
Proof.
iIntros (? Iinv Hκκ' Haliveκ') "(HI & Hinv) Hraw Hκalive' Hvs".
destruct (decide (κ = κ')) as [<-|Hκneq].
{ iModIntro. iExists Pb. rewrite /Iinv. iFrame "HI Hinv Hκalive' Hraw".
iApply (lft_vs_cons with "[]"); last done.
iIntros "(Hdead & HPb)".
iMod (raw_bor_fake _ false _ P with "Hdead") as "[Hdead Hraw]"; first solve_ndisj.
by iFrame. }
assert (κ κ') by (by apply strict_spec_alt).
iDestruct (raw_bor_inI with "HI Hraw") as %HI.
iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hinv Hclose]".
{ rewrite elem_of_difference elem_of_dom not_elem_of_singleton. done. }
rewrite {1}/raw_bor. iDestruct "Hraw" as (i) "[Hi #Hislice]".
iMod (raw_bor_unnest with "[$HI $Hinv] Hi Hislice Hκalive' [Hvs]") as (Pb') "([HI Hκ] & ? & ? & ?)"; [done..| |].
{ iApply (lft_vs_cons with "[]"); last done.
iIntros "[$ [>? $]]". iModIntro. iNext. rewrite /raw_bor.
iExists i. by iFrame. }
iExists Pb'. iModIntro. iFrame. iNext. by iApply "Hclose".
Qed.
Lemma raw_rebor E κ κ' P : Lemma raw_rebor E κ κ' P :
lftN E κ κ' lftN E κ κ'
lft_ctx -∗ raw_bor κ P ={E}=∗ lft_ctx -∗ raw_bor κ P ={E}=∗
...@@ -130,7 +160,7 @@ Proof. ...@@ -130,7 +160,7 @@ Proof.
{ by rewrite /idx_bor_own. } { by rewrite /idx_bor_own. }
iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hκ Hκclose]". iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hκ Hκclose]".
{ by rewrite elem_of_difference elem_of_dom not_elem_of_singleton. } { by rewrite elem_of_difference elem_of_dom not_elem_of_singleton. }
iMod (raw_bor_unnest _ _ _ _ (idx_bor_own 1 (κ, i) Pi)%I iMod (raw_bor_unnest _ true _ _ _ (idx_bor_own 1 (κ, i) Pi)%I
with "[$HI $Hκ] Hi Hislice Hbor [Hvs]") with "[$HI $Hκ] Hi Hislice Hbor [Hvs]")
as (Pb') "([HI Hκ] & $ & Halive & Hvs)"; [solve_ndisj|done|done|..]. as (Pb') "([HI Hκ] & $ & Halive & Hvs)"; [solve_ndisj|done|done|..].
{ iNext. by iApply lft_vs_frame. } { iNext. by iApply lft_vs_frame. }
......
From lrust.lifetime Require Export borrow derived. From lrust.lifetime Require Export borrow derived.
From lrust.lifetime Require Import raw_reborrow. From lrust.lifetime Require Import raw_reborrow accessors.
From iris.algebra Require Import csum auth frac gmap dec_agree gset. From iris.algebra Require Import csum auth frac gmap dec_agree gset.
From iris.base_logic Require Import big_op. From iris.base_logic Require Import big_op.
From iris.base_logic.lib Require Import boxes. From iris.base_logic.lib Require Import boxes.
...@@ -31,36 +31,60 @@ Lemma bor_unnest E κ κ' P : ...@@ -31,36 +31,60 @@ Lemma bor_unnest E κ κ' P :
Proof. Proof.
iIntros (?) "#LFT Hκ". rewrite {2}/bor. iIntros (?) "#LFT Hκ". rewrite {2}/bor.
iMod (bor_exists with "LFT Hκ") as (κ0) "Hκ"; first done. iMod (bor_exists with "LFT Hκ") as (κ0) "Hκ"; first done.
rewrite {1}/bor; iDestruct "Hκ" as (κ0') "[#H⊑ Hκ]". iMod (bor_sep with "LFT Hκ") as "[Hκ⊑ Hκ]"; first done.
rewrite {2}/bor; iDestruct "Hκ" as (κ0') "[#Hκ'⊑ Hκ]".
iMod (bor_acc_atomic with "LFT Hκ⊑") as "[[#Hκ⊑ Hclose]|[#H† Hclose]]"; first done; last first.
{ iModIntro. iNext. iMod "Hclose" as "_". iApply (bor_fake with "LFT"); first done.
iApply lft_dead_or. iRight. done. }
iMod ("Hclose" with "Hκ⊑") as "_".
set (κ'' := κ0 κ0'). set (κ'' := κ0 κ0').
iMod (raw_rebor _ _ κ'' with "LFT Hκ") as "[Hκ _]"; first done. iMod (raw_rebor _ _ κ'' with "LFT Hκ") as "[Hκ _]"; first done.
{ apply gmultiset_union_subseteq_r. } { apply gmultiset_union_subseteq_r. }
iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose". iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose".
iMod (ilft_create _ _ κ'' with "HA HI Hinv") as (A' I') "(% & HA & HI & Hinv)". iMod (ilft_create _ _ κ'' with "HA HI Hinv") as (A' I') "(% & HA & HI & Hinv)".
clear A I; rename A' into A; rename I' into I. clear A I; rename A' into A; rename I' into I.
iDestruct (big_sepS_delete _ _ κ'' with "Hinv") as "[Hinv' Hinv]"; iDestruct (big_sepS_delete _ _ κ'' with "Hinv") as "[Hκ'' Hinv]";
first by apply elem_of_dom. first by apply elem_of_dom.
rewrite {1}/lft_inv; iDestruct "Hinv'" as "[[Hinv' >%]|[Hdead >%]]"; last first. rewrite {1}/lft_inv; iDestruct "Hκ''" as "[[Hinv' >%]|[Hdead >Hdeadin]]"; last first.
{ rewrite /lft_inv_dead; { iDestruct "Hdeadin" as %Hdeadin. iMod (lft_dead_in_tok with "HA") as "[HA #H†]"; first done.
iDestruct "Hdead" as (Pi) "(Hdead & Hcnt & Hinh)". iMod ("Hclose" with "[-]") as "_".
iMod (raw_bor_fake _ true _ P with "Hdead")
as "[Hdead Hbor]"; first solve_ndisj.
iMod ("Hclose" with "[- Hbor]") as "_".
{ rewrite /lfts_inv. iExists A, I. iFrame "HA HI". { rewrite /lfts_inv. iExists A, I. iFrame "HA HI".
iApply (big_sepS_delete _ _ κ''); first by apply elem_of_dom. iApply (big_sepS_delete _ _ κ''); first by apply elem_of_dom.
iNext; iFrame "Hinv". rewrite /lft_inv. iRight. iSplit; last auto. iNext; iFrame "Hinv". rewrite /lft_inv. iRight. iSplit; auto. }
rewrite /lft_inv_dead. iExists Pi. iFrame. } iMod (fupd_intro_mask') as "Hclose"; last iModIntro; first solve_ndisj.
iApply (step_fupd_mask_mono E _ _ E); try solve_ndisj. iNext. iMod "Hclose" as "_".
rewrite /bor. do 3 iModIntro. iApply (bor_fake with "LFT >"); first done.
iExists κ''. iFrame "Hbor". rewrite /κ''. iApply (lft_incl_dead with "[] H†"); first done.
(* Why is this going to work out *) by iApply (lft_incl_mono with "Hκ⊑"). }
admit. }
rewrite {1}/raw_bor /idx_bor_own /=; iDestruct "Hκ" as (i) "[Hi #Hislice]". rewrite {1}/raw_bor /idx_bor_own /=; iDestruct "Hκ" as (i) "[Hi #Hislice]".
rewrite lft_inv_alive_unfold; rewrite lft_inv_alive_unfold;
iDestruct "Hinv'" as (Pb Pi) "(Halive & Hvs & Hinh)". iDestruct "Hinv'" as (Pb Pi) "(Halive & Hvs & Hinh)".
rewrite /lft_bor_alive; iDestruct "Halive" as (B) "(Hbox & >HB● & HB)". rewrite /lft_bor_alive; iDestruct "Halive" as (B) "(Hbox & >HB● & HB)".
iDestruct (own_bor_valid_2 with "HB● Hi") iDestruct (own_bor_valid_2 with "HB● Hi")
as %[HB%to_borUR_included _]%auth_valid_discrete_2. as %[HB%to_borUR_included _]%auth_valid_discrete_2.
iMod (own_bor_update_2 with "HB● Hi") as "[HB● Hi]". iMod (slice_delete_full _ _ true with "Hislice Hbox") as (Pb') "(HP & #EQ & Hbox)"; first solve_ndisj.
Admitted. { by rewrite lookup_fmap HB. }
iMod (own_bor_update_2 with "HB● Hi") as "HB●".
{ apply auth_update_dealloc, delete_singleton_local_update. apply _. }
iMod (fupd_intro_mask') as "Hclose'"; last iModIntro; first solve_ndisj.
iNext. iMod "Hclose'" as "_".
iAssert (lft_bor_alive κ'' Pb') with "[Hbox HB● HB]" as "Halive".
{ rewrite /lft_bor_alive. iExists (delete i B).
rewrite fmap_delete. iFrame "Hbox". iSplitL "HB●".
- rewrite /to_borUR fmap_delete. done.
- rewrite big_sepM_delete; last done. iDestruct "HB" as "[_ $]". }
iMod (raw_bor_unnest' _ false with "[$HI $Hinv] HP Halive [Hvs]") as (Pb'') "([HI Hinv] & HP & Halive & Hvs)";
[solve_ndisj|exact: gmultiset_union_subseteq_l|done| |].
{ (* TODO: Use iRewrite supporting cotnractive rewriting. *)
iApply (lft_vs_cons with "[]"); last done.
iIntros "[$ Hbor]". iModIntro. iNext. by iRewrite "EQ". }
iMod ("Hclose" with "[-HP]") as "_".
{ iNext. simpl. rewrite /lfts_inv. iExists A, I. iFrame.
rewrite (big_sepS_delete _ (dom _ I) κ''); last by apply elem_of_dom.
iFrame. rewrite /lft_inv lft_inv_alive_unfold. iLeft.
iFrame "%". iExists Pb'', Pi. iFrame. }
iModIntro. rewrite /bor. iExists κ''. iFrame. subst κ''.
by iApply (lft_incl_mono with "Hκ⊑").
Qed.
End reborrow. End reborrow.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment