Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lambda-rust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Service Desk
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
lambda-rust
Commits
28bcc853
Commit
28bcc853
authored
8 years ago
by
Jacques-Henri Jourdan
Browse files
Options
Downloads
Patches
Plain Diff
Ref is a type.
parent
6b0f47fc
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/typing/unsafe/refcell.v
+114
-3
114 additions, 3 deletions
theories/typing/unsafe/refcell.v
with
114 additions
and
3 deletions
theories/typing/unsafe/refcell.v
+
114
−
3
View file @
28bcc853
...
...
@@ -23,7 +23,10 @@ Definition reading_st (q : frac) (κ : lft) : refcell_stR :=
Some
(
Cinr
(
to_agree
(
κ
:
leibnizC
lft
),
q
,
xH
))
.
Definition
writing_st
(
q
:
frac
)
:
refcell_stR
:=
Some
(
Cinl
(
Excl
()))
.
Section
refcell
.
Definition
refcellN
:=
nroot
.
@
"refcell"
.
Definition
refcell_invN
:=
refcellN
.
@
"inv"
.
Section
refcell_inv
.
Context
`{
typeG
Σ
,
refcellG
Σ
}
.
Definition
refcell_inv
tid
(
l
:
loc
)
(
γ
:
gname
)
(
α
:
lft
)
ty
:
iProp
Σ
:=
...
...
@@ -67,6 +70,10 @@ Section refcell.
by
iApply
lft_glb_mono
;
[
iApply
Hα
|
iApply
lft_incl_refl
]
.
-
iIntros
"?"
.
iApply
(
"Hb"
with
">"
)
.
by
iApply
"H†"
.
Qed
.
End
refcell_inv
.
Section
refcell
.
Context
`{
typeG
Σ
,
refcellG
Σ
}
.
Program
Definition
refcell
(
ty
:
type
)
:=
{|
ty_size
:=
S
ty
.(
ty_size
);
...
...
@@ -76,7 +83,7 @@ Section refcell.
|
_
=>
False
end
%
I
;
ty_shr
κ
tid
l
:=
(
∃
α
γ
,
κ
⊑
α
∗
&
na
{
α
,
tid
,
lrust
N
}(
refcell_inv
tid
l
γ
α
ty
))
%
I
|}
.
(
∃
α
γ
,
κ
⊑
α
∗
&
na
{
α
,
tid
,
refcell_inv
N
}(
refcell_inv
tid
l
γ
α
ty
))
%
I
|}
.
Next
Obligation
.
iIntros
(??[|[[]|]]);
try
iIntros
"[]"
.
rewrite
ty_size_eq
.
iIntros
"[_ %]!%/="
.
congruence
.
...
...
@@ -164,4 +171,108 @@ Section refcell.
Proof
.
move
=>????[|[[]|]]
//=
??
.
iIntros
"[$?]"
.
by
iApply
send_change_tid
.
Qed
.
End
refcell
.
Hint
Resolve
refcell_mono'
refcell_proper'
:
lrust_typing
.
Definition
refcell_refN
:=
refcellN
.
@
"ref"
.
Section
ref
.
Context
`{
typeG
Σ
,
refcellG
Σ
}
.
Program
Definition
ref
(
α
:
lft
)
(
ty
:
type
)
:=
{|
ty_size
:=
2
;
ty_own
tid
vl
:=
match
vl
return
_
with
|
[
#
(
LitLoc
lv
);
#
(
LitLoc
lrc
)
]
=>
∃
ν
q
γ
β
ty'
,
ty
.(
ty_shr
)
(
α
∪
ν
)
tid
lv
∗
α
⊑
β
∗
&
na
{
β
,
tid
,
refcell_invN
}(
refcell_inv
tid
lrc
γ
β
ty'
)
∗
q
.[
ν
]
∗
own
γ
(
◯
reading_st
q
ν
)
|
_
=>
False
end
;
ty_shr
κ
tid
l
:=
▷
∃
ν
q
γ
β
ty'
(
lv
lrc
:
loc
),
κ
⊑
ν
∗
&
frac
{
κ
}
(
λ
q
,
l
↦∗
{
q
}
[
#
lv
;
#
lrc
])
∗
ty
.(
ty_shr
)
(
α
∪
ν
)
tid
lv
∗
α
⊑
β
∗
&
na
{
β
,
tid
,
refcell_invN
}(
refcell_inv
tid
lrc
γ
β
ty'
)
∗
&
na
{
κ
,
tid
,
refcell_refN
}(
own
γ
(
◯
reading_st
q
ν
))
|}
%
I
.
Next
Obligation
.
iIntros
(???[|[[]|][|[[]|][]]]);
try
iIntros
"[]"
.
by
iIntros
"_"
.
Qed
.
Next
Obligation
.
iIntros
(
α
ty
E
κ
l
tid
q
?)
"#LFT Hb Htok"
.
iMod
(
bor_exists
with
"LFT Hb"
)
as
(
vl
)
"Hb"
.
done
.
iMod
(
bor_sep
with
"LFT Hb"
)
as
"[H↦ Hb]"
.
done
.
iMod
(
bor_fracture
(
λ
q
,
l
↦∗
{
q
}
vl
)
%
I
with
"LFT H↦"
)
as
"#H↦"
.
done
.
destruct
vl
as
[|[[|
lv
|]|][|[[|
lrc
|]|][]]];
try
by
iMod
(
bor_persistent_tok
with
"LFT Hb Htok"
)
as
"[>[] _]"
.
iMod
(
bor_exists
with
"LFT Hb"
)
as
(
ν
)
"Hb"
.
done
.
iMod
(
bor_exists
with
"LFT Hb"
)
as
(
q'
)
"Hb"
.
done
.
iMod
(
bor_exists
with
"LFT Hb"
)
as
(
γ
)
"Hb"
.
done
.
iMod
(
bor_exists
with
"LFT Hb"
)
as
(
β
)
"Hb"
.
done
.
iMod
(
bor_exists
with
"LFT Hb"
)
as
(
ty'
)
"Hb"
.
done
.
iMod
(
bor_sep
with
"LFT Hb"
)
as
"[Hshr Hb]"
.
done
.
iMod
(
bor_persistent_tok
with
"LFT Hshr Htok"
)
as
"[#Hshr Htok]"
.
done
.
iMod
(
bor_sep
with
"LFT Hb"
)
as
"[Hαβ Hb]"
.
done
.
iMod
(
bor_persistent_tok
with
"LFT Hαβ Htok"
)
as
"[#Hαβ Htok]"
.
done
.
iMod
(
bor_sep
with
"LFT Hb"
)
as
"[Hinv Hb]"
.
done
.
iMod
(
bor_persistent_tok
with
"LFT Hinv Htok"
)
as
"[#Hinv $]"
.
done
.
iMod
(
bor_sep
with
"LFT Hb"
)
as
"[Hκν Hb]"
.
done
.
(* FIXME : I cannot write #Hκν directly. *)
iDestruct
(
frac_bor_lft_incl
with
"LFT >[Hκν]"
)
as
"Hκν"
;
last
iDestruct
"Hκν"
as
"#Hκν"
.
{
iApply
bor_fracture
;
try
done
.
by
rewrite
Qp_mult_1_r
.
}
iMod
(
bor_na
with
"Hb"
)
as
"#Hb"
.
done
.
eauto
20
.
Qed
.
Next
Obligation
.
iIntros
(??????)
"#? #? H"
.
iDestruct
"H"
as
(
ν
q
γ
β
ty'
lv
lrc
)
"H"
.
iExists
_,
_,
_,
_,
_,
_,
_
.
iDestruct
"H"
as
"#(? & ? & $ & $ & $ & ?)"
.
iNext
.
iSplit
;
last
iSplit
.
-
by
iApply
lft_incl_trans
.
-
by
iApply
frac_bor_shorten
.
-
by
iApply
na_bor_shorten
.
Qed
.
Global
Instance
ref_contractive
α
:
Contractive
(
ref
α
)
.
Proof
.
intros
n
??
EQ
.
unfold
ref
.
split
;
[
split
|]=>
//=.
-
f_contractive
=>
tid
vl
.
repeat
(
f_contractive
||
f_equiv
)
.
apply
EQ
.
-
intros
κ
tid
l
.
f_contractive
.
repeat
f_equiv
.
apply
EQ
.
Qed
.
Global
Instance
ref_ne
n
α
:
Proper
(
dist
n
==>
dist
n
)
(
ref
α
)
.
Proof
.
apply
contractive_ne
,
_
.
Qed
.
Global
Instance
ref_mono
E
L
:
Proper
(
flip
(
lctx_lft_incl
E
L
)
==>
eqtype
E
L
==>
subtype
E
L
)
ref
.
Proof
.
iIntros
(
α1
α2
Hα
ty1
ty2
Hty
)
"#LFT #HE #HL"
.
pose
proof
Hty
as
Hty'
%
eqtype_unfold
.
iDestruct
(
Hty'
with
"LFT HE HL"
)
as
"(%&#Ho&#Hs)"
.
iDestruct
(
Hα
with
"HE HL"
)
as
"Hα1α2"
.
iSplit
;
[|
iSplit
;
iAlways
]
.
-
done
.
-
iIntros
(
tid
[|[[]|][|[[]|][]]]);
try
iIntros
"[]"
.
iIntros
"H"
.
iDestruct
"H"
as
(
ν
q
γ
β
ty'
)
"(#Hshr & #H⊑ & #Hinv & Htok & Hown)"
.
iExists
ν
,
q
,
γ
,
β
,
ty'
.
iFrame
"∗#"
.
iSplit
.
+
iApply
ty_shr_mono
;
last
by
iApply
"Hs"
.
done
.
iApply
lft_glb_mono
.
done
.
iApply
lft_incl_refl
.
+
by
iApply
lft_incl_trans
.
-
iIntros
(
κ
tid
l
)
"H"
.
iNext
.
iDestruct
"H"
as
(
ν
q
γ
β
ty'
lv
lrc
)
"H"
.
iExists
ν
,
q
,
γ
,
β
,
ty'
,
lv
,
lrc
.
iDestruct
"H"
as
"#($&$&?&?&$&$)"
.
iSplit
.
+
iApply
ty_shr_mono
;
last
by
iApply
"Hs"
.
done
.
iApply
lft_glb_mono
.
done
.
iApply
lft_incl_refl
.
+
by
iApply
lft_incl_trans
.
Qed
.
Global
Instance
ref_mono_flip
E
L
:
Proper
(
lctx_lft_incl
E
L
==>
flip
(
eqtype
E
L
)
==>
flip
(
subtype
E
L
))
ref
.
Proof
.
intros
??????
.
by
apply
ref_mono
.
Qed
.
Lemma
ref_mono'
E
L
α1
α2
ty1
ty2
:
lctx_lft_incl
E
L
α2
α1
→
eqtype
E
L
ty1
ty2
→
subtype
E
L
(
ref
α1
ty1
)
(
ref
α2
ty2
)
.
Proof
.
intros
.
by
eapply
ref_mono
.
Qed
.
Global
Instance
ref_proper
E
L
:
Proper
(
lctx_lft_eq
E
L
==>
eqtype
E
L
==>
eqtype
E
L
)
ref
.
Proof
.
intros
??[]???
.
split
;
by
apply
ref_mono'
.
Qed
.
Lemma
ref_proper'
E
L
α1
α2
ty1
ty2
:
lctx_lft_eq
E
L
α1
α2
→
eqtype
E
L
ty1
ty2
→
eqtype
E
L
(
ref
α1
ty1
)
(
ref
α2
ty2
)
.
Proof
.
intros
.
by
eapply
ref_proper
.
Qed
.
End
ref
.
Hint
Resolve
refcell_mono'
refcell_proper'
ref_mono'
ref_proper'
:
lrust_typing
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment