Skip to content
Snippets Groups Projects
Commit 20623c96 authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

Use notations.

parent 15465c80
No related branches found
No related tags found
No related merge requests found
Pipeline #
...@@ -148,9 +148,8 @@ Module Type lifetime_sig. ...@@ -148,9 +148,8 @@ Module Type lifetime_sig.
lftN E κ κ' -∗ q.[κ] ={E}=∗ q', q'.[κ'] (q'.[κ'] ={E}=∗ q.[κ]). lftN E κ κ' -∗ q.[κ] ={E}=∗ q', q'.[κ'] (q'.[κ'] ={E}=∗ q.[κ]).
Parameter lft_incl_dead : E κ κ', lftN E κ κ' -∗ [κ'] ={E}=∗ [κ]. Parameter lft_incl_dead : E κ κ', lftN E κ κ' -∗ [κ'] ={E}=∗ [κ].
Parameter lft_incl_intro : κ κ', Parameter lft_incl_intro : κ κ',
(( q, lft_tok q κ ={lftN}=∗ q', (( q, q.[κ] ={lftN}=∗ q', q'.[κ'] (q'.[κ'] ={lftN}=∗ q.[κ]))
lft_tok q' κ' (lft_tok q' κ' ={lftN}=∗ lft_tok q κ)) ([κ'] ={lftN}=∗ [κ])) -∗ κ κ'.
(lft_dead κ' ={lftN}=∗ lft_dead κ)) -∗ κ κ'.
End properties. End properties.
......
...@@ -330,9 +330,8 @@ Proof. ...@@ -330,9 +330,8 @@ Proof.
Qed. Qed.
Lemma lft_incl_intro κ κ' : Lemma lft_incl_intro κ κ' :
(( q, lft_tok q κ ={lftN}=∗ q', (( q, q.[κ] ={lftN}=∗ q', q'.[κ'] (q'.[κ'] ={lftN}=∗ q.[κ]))
lft_tok q' κ' (lft_tok q' κ' ={lftN}=∗ lft_tok q κ)) ([κ'] ={lftN}=∗ [κ])) -∗ κ κ'.
(lft_dead κ' ={lftN}=∗ lft_dead κ)) -∗ κ κ'.
Proof. reflexivity. Qed. Proof. reflexivity. Qed.
Lemma lft_intersect_incl_l κ κ': (κ κ' κ)%I. Lemma lft_intersect_incl_l κ κ': (κ κ' κ)%I.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment