Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
117
Issues
117
List
Boards
Labels
Service Desk
Milestones
Merge Requests
18
Merge Requests
18
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
Iris
Commits
f931b131
Commit
f931b131
authored
Feb 17, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
strengthen sts_alloc and auth_alloc
parent
d9c978e7
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
10 additions
and
9 deletions
+10
-9
heap_lang/heap.v
heap_lang/heap.v
+2
-1
program_logic/auth.v
program_logic/auth.v
+4
-4
program_logic/sts.v
program_logic/sts.v
+4
-4
No files found.
heap_lang/heap.v
View file @
f931b131
...
...
@@ -67,7 +67,8 @@ Section heap.
ownP
σ
⊑
pvs
N
N
(
∃
(
_
:
heapG
Σ
),
heap_ctx
N
∧
Π★
{
map
σ
}
heap_mapsto
).
Proof
.
rewrite
-{
1
}(
from_to_heap
σ
).
etransitivity
.
{
apply
(
auth_alloc
(
ownP
∘
of_heap
)
N
(
to_heap
σ
)),
to_heap_valid
.
}
{
rewrite
[
ownP
_
]
later_intro
.
apply
(
auth_alloc
(
ownP
∘
of_heap
)
N
(
to_heap
σ
)),
to_heap_valid
.
}
apply
pvs_mono
,
exist_elim
=>
γ
.
rewrite
-(
exist_intro
(
HeapG
_
_
γ
))
;
apply
and_mono_r
.
induction
σ
as
[|
l
v
σ
Hl
IH
]
using
map_ind
.
...
...
program_logic/auth.v
View file @
f931b131
...
...
@@ -42,17 +42,17 @@ Section auth.
Proof
.
by
rewrite
/
auth_own
own_valid
auth_validI
.
Qed
.
Lemma
auth_alloc
N
a
:
✓
a
→
φ
a
⊑
pvs
N
N
(
∃
γ
,
auth_ctx
γ
N
φ
∧
auth_own
γ
a
).
✓
a
→
▷
φ
a
⊑
pvs
N
N
(
∃
γ
,
auth_ctx
γ
N
φ
∧
auth_own
γ
a
).
Proof
.
intros
Ha
.
eapply
sep_elim_True_r
.
{
by
eapply
(
own_alloc
(
Auth
(
Excl
a
)
a
)
N
).
}
rewrite
pvs_frame_l
.
apply
pvs_strip_pvs
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
γ
.
rewrite
-(
exist_intro
γ
).
transitivity
(
▷
auth_inv
γ
φ
★
auth_own
γ
a
)%
I
.
{
rewrite
/
auth_inv
-
later_intro
-(
exist_intro
a
)
.
{
rewrite
/
auth_inv
-
(
exist_intro
a
)
later_sep
.
rewrite
const_equiv
//
left_id
.
rewrite
[(
_
★
φ
_
)%
I
]
comm
-
assoc
.
apply
sep_mono
;
first
done
.
rewrite
/
auth_own
-
own_op
auth_both_op
.
done
.
}
rewrite
[(
_
★
▷
φ
_
)%
I
]
comm
-
assoc
.
apply
sep_mono
;
first
done
.
rewrite
-
later_intro
/
auth_own
-
own_op
auth_both_op
.
done
.
}
rewrite
(
inv_alloc
N
)
/
auth_ctx
pvs_frame_r
.
apply
pvs_mono
.
by
rewrite
always_and_sep_l
.
Qed
.
...
...
program_logic/sts.v
View file @
f931b131
...
...
@@ -64,7 +64,7 @@ Section sts.
Proof
.
intros
.
by
apply
own_update
,
sts_update_frag_up
.
Qed
.
Lemma
sts_alloc
N
s
:
φ
s
⊑
pvs
N
N
(
∃
γ
,
sts_ctx
γ
N
φ
∧
sts_own
γ
s
(
⊤
∖
sts
.
tok
s
)).
▷
φ
s
⊑
pvs
N
N
(
∃
γ
,
sts_ctx
γ
N
φ
∧
sts_own
γ
s
(
⊤
∖
sts
.
tok
s
)).
Proof
.
eapply
sep_elim_True_r
.
{
apply
(
own_alloc
(
sts_auth
s
(
⊤
∖
sts
.
tok
s
))
N
).
...
...
@@ -72,9 +72,9 @@ Section sts.
rewrite
pvs_frame_l
.
apply
pvs_strip_pvs
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
γ
.
rewrite
-(
exist_intro
γ
).
transitivity
(
▷
sts_inv
γ
φ
★
sts_own
γ
s
(
⊤
∖
sts
.
tok
s
))%
I
.
{
rewrite
/
sts_inv
-
later_intro
-(
exist_intro
s
)
.
rewrite
[(
_
★
φ
_
)%
I
]
comm
-
assoc
.
apply
sep_mono_r
.
by
rewrite
-
own_op
sts_op_auth_frag_up
;
last
solve_elem_of
.
}
{
rewrite
/
sts_inv
-
(
exist_intro
s
)
later_sep
.
rewrite
[(
_
★
▷
φ
_
)%
I
]
comm
-
assoc
.
apply
sep_mono_r
.
by
rewrite
-
later_intro
-
own_op
sts_op_auth_frag_up
;
last
solve_elem_of
.
}
rewrite
(
inv_alloc
N
)
/
sts_ctx
pvs_frame_r
.
by
rewrite
always_and_sep_l
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment