Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
122
Issues
122
List
Boards
Labels
Service Desk
Milestones
Merge Requests
18
Merge Requests
18
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
Iris
Commits
e4c96015
Commit
e4c96015
authored
Jun 01, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Notations for X ⊆ Y ⊆ Z.
parent
d0131be5
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
6 additions
and
1 deletion
+6
-1
prelude/base.v
prelude/base.v
+5
-0
program_logic/invariants.v
program_logic/invariants.v
+1
-1
No files found.
prelude/base.v
View file @
e4c96015
...
...
@@ -637,6 +637,11 @@ Notation "(⊄)" := (λ X Y, X ⊄ Y) (only parsing) : C_scope.
Notation
"( X ⊄ )"
:
=
(
λ
Y
,
X
⊄
Y
)
(
only
parsing
)
:
C_scope
.
Notation
"( ⊄ X )"
:
=
(
λ
Y
,
Y
⊄
X
)
(
only
parsing
)
:
C_scope
.
Notation
"X ⊆ Y ⊆ Z"
:
=
(
X
⊆
Y
∧
Y
⊆
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊆ Y ⊂ Z"
:
=
(
X
⊆
Y
∧
Y
⊂
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊂ Y ⊆ Z"
:
=
(
X
⊂
Y
∧
Y
⊆
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊂ Y ⊂ Z"
:
=
(
X
⊂
Y
∧
Y
⊂
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
...
...
program_logic/invariants.v
View file @
e4c96015
...
...
@@ -34,7 +34,7 @@ Qed.
(** Fairly explicit form of opening invariants *)
Lemma
inv_open
E
N
P
:
nclose
N
⊆
E
→
inv
N
P
⊢
∃
E'
,
■
(
E
∖
nclose
N
⊆
E'
∧
E'
⊆
E
)
★
inv
N
P
⊢
∃
E'
,
■
(
E
∖
nclose
N
⊆
E'
⊆
E
)
★
|={
E
,
E'
}=>
▷
P
★
(
▷
P
={
E'
,
E
}=
★
True
).
Proof
.
rewrite
/
inv
.
iIntros
{?}
"Hinv"
.
iDestruct
"Hinv"
as
{
i
}
"[% #Hi]"
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment