Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
a39b10c9
Commit
a39b10c9
authored
Feb 25, 2016
by
Robbert Krebbers
Browse files
Merge branch 'master' of gitlab.mpisws.org:FP/iriscoq
parents
09e52924
8d983adf
Pipeline
#162
passed with stage
Changes
5
Pipelines
1
Hide whitespace changes
Inline
Sidebyside
Showing
5 changed files
with
22 additions
and
12 deletions
+22
12
prelude/tactics.v
prelude/tactics.v
+13
3
program_logic/auth.v
program_logic/auth.v
+1
1
program_logic/pviewshifts.v
program_logic/pviewshifts.v
+1
0
program_logic/sts.v
program_logic/sts.v
+6
8
program_logic/weakestpre.v
program_logic/weakestpre.v
+1
0
No files found.
prelude/tactics.v
View file @
a39b10c9
...
...
@@ 256,22 +256,28 @@ Ltac f_equiv :=
let
H
:
=
fresh
"Proper"
in
assert
(
Proper
(
R
==>
R
==>
R
)
f
)
as
H
by
(
eapply
_
)
;
apply
H
;
clear
H
;
f_equiv
(* Next, try to infer the relation *)
(* Next, try to infer the relation. Unfortunately, there is an instance
of Proper for (eq ==> _), which will always be matched. *)
(* TODO: Can we exclude that instance? *)
(* TODO: If some of the arguments are the same, we could also
query for "pointwise_relation"'s. But that leads to a combinatorial
explosion about which arguments are and which are not the same. *)


?R
(
?f
?x
)
(
?f
_
)
=>
let
R1
:
=
fresh
"R"
in
let
H
:
=
fresh
"Prop
er
"
in
let
R1
:
=
fresh
"R"
in
let
H
:
=
fresh
"
H
Prop"
in
let
T
:
=
type
of
x
in
evar
(
R1
:
relation
T
)
;
assert
(
Proper
(
R1
==>
R
)
f
)
as
H
by
(
subst
R1
;
eapply
_
)
;
subst
R1
;
apply
H
;
clear
H
;
f_equiv


?R
(
?f
?x
?y
)
(
?f
_
_
)
=>
let
R1
:
=
fresh
"R"
in
let
R2
:
=
fresh
"R"
in
let
H
:
=
fresh
"Prop
er
"
in
let
H
:
=
fresh
"
H
Prop"
in
let
T1
:
=
type
of
x
in
evar
(
R1
:
relation
T1
)
;
let
T2
:
=
type
of
y
in
evar
(
R2
:
relation
T2
)
;
assert
(
Proper
(
R1
==>
R2
==>
R
)
f
)
as
H
by
(
subst
R1
R2
;
eapply
_
)
;
subst
R1
R2
;
apply
H
;
clear
H
;
f_equiv
(* In case the function symbol differs, but the arguments are the same,
maybe we have a pointwise_relation in our context. *)

H
:
pointwise_relation
_
?R
?f
?g

?R
(
?f
?x
)
(
?g
?x
)
=>
apply
H
;
f_equiv
end

idtac
(* Let the user solve this goal *)
].
...
...
@@ 288,6 +294,10 @@ Ltac solve_proper :=
end
;
(* Unfold the head symbol, which is the one we are proving a new property about *)
lazymatch
goal
with


?R
(
?f
_
_
_
_
_
_
_
_
)
(
?f
_
_
_
_
_
_
_
_
)
=>
unfold
f


?R
(
?f
_
_
_
_
_
_
_
)
(
?f
_
_
_
_
_
_
_
)
=>
unfold
f


?R
(
?f
_
_
_
_
_
_
)
(
?f
_
_
_
_
_
_
)
=>
unfold
f


?R
(
?f
_
_
_
_
_
)
(
?f
_
_
_
_
_
)
=>
unfold
f


?R
(
?f
_
_
_
_
)
(
?f
_
_
_
_
)
=>
unfold
f


?R
(
?f
_
_
_
)
(
?f
_
_
_
)
=>
unfold
f


?R
(
?f
_
_
)
(
?f
_
_
)
=>
unfold
f
...
...
program_logic/auth.v
View file @
a39b10c9
...
...
@@ 40,7 +40,7 @@ Section auth.
Implicit
Types
γ
:
gname
.
Global
Instance
auth_own_ne
n
γ
:
Proper
(
dist
n
==>
dist
n
)
(
auth_own
γ
).
Proof
.
by
rewrite
auth_own_eq
/
auth_own_def
=>
a
b
>
.
Qed
.
Proof
.
rewrite
auth_own_eq
;
solve_proper
.
Qed
.
Global
Instance
auth_own_proper
γ
:
Proper
((
≡
)
==>
(
≡
))
(
auth_own
γ
).
Proof
.
by
rewrite
auth_own_eq
/
auth_own_def
=>
a
b
>.
Qed
.
Global
Instance
auth_own_timeless
γ
a
:
TimelessP
(
auth_own
γ
a
).
...
...
program_logic/pviewshifts.v
View file @
a39b10c9
...
...
@@ 9,6 +9,7 @@ Local Hint Extern 10 (✓{_} _) =>

H
:
wsat
_
_
_
_

_
=>
apply
wsat_valid
in
H
;
last
omega
end
;
solve_validN
.
(* TODO: Consider sealing this, like all the definitions in upred.v. *)
Program
Definition
pvs
{
Λ
Σ
}
(
E1
E2
:
coPset
)
(
P
:
iProp
Λ
Σ
)
:
iProp
Λ
Σ
:
=
{
uPred_holds
n
r1
:
=
∀
rf
k
Ef
σ
,
0
<
k
≤
n
→
(
E1
∪
E2
)
∩
Ef
=
∅
→
...
...
program_logic/sts.v
View file @
a39b10c9
...
...
@@ 52,22 +52,20 @@ Section sts.
(** Setoids *)
Global
Instance
sts_inv_ne
n
γ
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
sts_inv
γ
).
Proof
.
by
intros
φ
1
φ
2
H
φ
;
rewrite
/
sts_inv
;
setoid_rewrite
H
φ
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
sts_inv_proper
γ
:
Proper
(
pointwise_relation
_
(
≡
)
==>
(
≡
))
(
sts_inv
γ
).
Proof
.
by
intros
φ
1
φ
2
H
φ
;
rewrite
/
sts_inv
;
setoid_rewrite
H
φ
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
sts_ownS_proper
γ
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
(
sts_ownS
γ
).
Proof
.
intros
S1
S2
HS
T1
T2
HT
.
by
rewrite
!
sts_ownS_eq
/
sts_ownS_def
HS
HT
.
Qed
.
Proof
.
rewrite
sts_ownS_eq
.
solve_proper
.
Qed
.
Global
Instance
sts_own_proper
γ
s
:
Proper
((
≡
)
==>
(
≡
))
(
sts_own
γ
s
).
Proof
.
intros
T1
T2
HT
.
by
rewrite
!
sts_own_eq
/
sts_own_def
HT
.
Qed
.
Proof
.
rewrite
sts_own_eq
.
solve_proper
.
Qed
.
Global
Instance
sts_ctx_ne
n
γ
N
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
sts_ctx
γ
N
).
Proof
.
by
intros
φ
1
φ
2
H
φ
;
rewrite
/
sts_ctx
H
φ
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
sts_ctx_proper
γ
N
:
Proper
(
pointwise_relation
_
(
≡
)
==>
(
≡
))
(
sts_ctx
γ
N
).
Proof
.
by
intros
φ
1
φ
2
H
φ
;
rewrite
/
sts_ctx
H
φ
.
Qed
.
Proof
.
solve_proper
.
Qed
.
(* The same rule as implication does *not* hold, as could be shown using
sts_frag_included. *)
...
...
program_logic/weakestpre.v
View file @
a39b10c9
...
...
@@ 30,6 +30,7 @@ CoInductive wp_pre {Λ Σ} (E : coPset)
wp_go
(
E
∪
Ef
)
(
wp_pre
E
Φ
)
(
wp_pre
⊤
(
λ
_
,
True
%
I
))
k
rf
e1
σ
1
)
→
wp_pre
E
Φ
e1
n
r1
.
(* TODO: Consider sealing this, like all the definitions in upred.v. *)
Program
Definition
wp
{
Λ
Σ
}
(
E
:
coPset
)
(
e
:
expr
Λ
)
(
Φ
:
val
Λ
→
iProp
Λ
Σ
)
:
iProp
Λ
Σ
:
=
{
uPred_holds
:
=
wp_pre
E
Φ
e
}.
Next
Obligation
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment