Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Iris
Iris
Commits
626a2258
Commit
626a2258
authored
Jan 22, 2017
by
Robbert Krebbers
Browse files
Hint Mode for Persistent, Timeless, Exclusive, ...
parent
7c61518e
Pipeline
#3751
passed with stage
in 4 minutes and 25 seconds
Changes
4
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
theories/algebra/cmra.v
View file @
626a2258
...
...
@@ -130,10 +130,12 @@ Infix "⋅?" := opM (at level 50, left associativity) : C_scope.
(** * Persistent elements *)
Class
Persistent
{
A
:
cmraT
}
(
x
:
A
)
:
=
persistent
:
pcore
x
≡
Some
x
.
Arguments
persistent
{
_
}
_
{
_
}.
Hint
Mode
Persistent
+
!
:
typeclass_instances
.
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
Class
Exclusive
{
A
:
cmraT
}
(
x
:
A
)
:
=
exclusive0_l
y
:
✓
{
0
}
(
x
⋅
y
)
→
False
.
Arguments
exclusive0_l
{
_
}
_
{
_
}
_
_
.
Hint
Mode
Exclusive
+
!
:
typeclass_instances
.
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
...
...
@@ -545,7 +547,7 @@ Section ucmra.
Global
Instance
cmra_unit_total
:
CMRATotal
A
.
Proof
.
intros
x
.
destruct
(
cmra_pcore_mono'
∅
x
∅
)
as
(
cx
&->&?)
;
eauto
using
ucmra_unit_least
,
(
persistent
∅
).
eauto
using
ucmra_unit_least
,
(
persistent
(
∅
:
A
)
).
Qed
.
End
ucmra
.
Hint
Immediate
cmra_unit_total
.
...
...
theories/algebra/ofe.v
View file @
626a2258
...
...
@@ -72,8 +72,10 @@ Hint Extern 1 (_ ≡{_}≡ _) => apply equiv_dist; assumption.
(** Discrete OFEs and Timeless elements *)
(* TODO: On paper, We called these "discrete elements". I think that makes
more sense. *)
Class
Timeless
`
{
Equiv
A
,
Dist
A
}
(
x
:
A
)
:
=
timeless
y
:
x
≡
{
0
}
≡
y
→
x
≡
y
.
Arguments
timeless
{
_
_
_
}
_
{
_
}
_
_
.
Class
Timeless
{
A
:
ofeT
}
(
x
:
A
)
:
=
timeless
y
:
x
≡
{
0
}
≡
y
→
x
≡
y
.
Arguments
timeless
{
_
}
_
{
_
}
_
_
.
Hint
Mode
Timeless
+
!
:
typeclass_instances
.
Class
Discrete
(
A
:
ofeT
)
:
=
discrete_timeless
(
x
:
A
)
:
>
Timeless
x
.
(** OFEs with a completion *)
...
...
@@ -1029,12 +1031,13 @@ Section sigma.
Global
Instance
sig_timeless
(
x
:
sig
P
)
:
Timeless
(
proj1_sig
x
)
→
Timeless
x
.
Proof
.
intros
?
y
.
destruct
x
,
y
.
unfold
dist
,
sig_dist
,
equiv
,
sig_equiv
.
apply
(
timeless
_
).
Qed
.
Global
Instance
sig_discrete_cofe
:
Discrete
A
→
Discrete
sigC
.
Proof
.
intros
?
[??]
[??].
rewrite
/
dist
/
equiv
/
ofe_dist
/
ofe_equiv
/=.
rewrite
/
sig_dist
/
sig_equiv
/=.
apply
discrete_timeless
.
Qed
.
intros
?
[
b
?]
;
destruct
x
as
[
a
?].
rewrite
/
dist
/
ofe_dist
/=
/
sig_dist
/
equiv
/
ofe_equiv
/=
/
sig_equiv
/=.
apply
(
timeless
_
).
Qed
.
Global
Instance
sig_discrete_cofe
:
Discrete
A
→
Discrete
sigC
.
Proof
.
intros
??.
apply
_
.
Qed
.
End
sigma
.
Arguments
sigC
{
_
}
_
.
theories/base_logic/big_op.v
View file @
626a2258
...
...
@@ -115,10 +115,12 @@ Notation "'[∗' 'mset' ] x ∈ X , P" := (big_opMS (M:=uPredUR _) X (λ x, P))
Class
PersistentL
{
M
}
(
Ps
:
list
(
uPred
M
))
:
=
persistentL
:
Forall
PersistentP
Ps
.
Arguments
persistentL
{
_
}
_
{
_
}.
Hint
Mode
PersistentL
+
!
:
typeclass_instances
.
Class
TimelessL
{
M
}
(
Ps
:
list
(
uPred
M
))
:
=
timelessL
:
Forall
TimelessP
Ps
.
Arguments
timelessL
{
_
}
_
{
_
}.
Hint
Mode
TimelessP
+
!
:
typeclass_instances
.
(** * Properties *)
Section
big_op
.
...
...
theories/base_logic/derived.v
View file @
626a2258
...
...
@@ -31,10 +31,12 @@ Typeclasses Opaque uPred_except_0.
Class
TimelessP
{
M
}
(
P
:
uPred
M
)
:
=
timelessP
:
▷
P
⊢
◇
P
.
Arguments
timelessP
{
_
}
_
{
_
}.
Hint
Mode
TimelessP
+
!
:
typeclass_instances
.
Class
PersistentP
{
M
}
(
P
:
uPred
M
)
:
=
persistentP
:
P
⊢
□
P
.
Hint
Mode
PersistentP
-
!
:
typeclass_instances
.
Arguments
persistentP
{
_
}
_
{
_
}.
Hint
Mode
PersistentP
+
!
:
typeclass_instances
.
Module
uPred
.
Section
derived
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment