Commit e9afd09d by Ralf Jung

### bump Iris

parent 2bcb3c3a
Pipeline #13463 passed with stage
in 16 minutes and 15 seconds
 ... ... @@ -6,5 +6,5 @@ install: [make "install"] remove: ["rm" "-rf" "'%{lib}%/coq/user-contrib/fri"] depends: [ "coq" { (>= "8.7.2") | (= "dev") } "coq-iris" { (= "dev.2018-10-22.3.4842a060") | (= "dev") } "coq-iris" { (= "dev.2018-11-08.2.9eee9408") | (= "dev") } ]
 From fri.algebra Require Export cmra. From fri.algebra Require Import upred upred_bi. Local Hint Extern 10 (_ ≤ _) => omega. Local Hint Extern 10 (_ ≤ _) => lia. Record agree (A : Type) : Type := Agree { agree_car : nat → A; ... ...
 ... ... @@ -77,7 +77,7 @@ Ltac solve_validN := match goal with | H : ✓{?n} ?y |- ✓{?n'} ?x => let Hn := fresh in let Hx := fresh in assert (n' ≤ n) as Hn by omega; assert (n' ≤ n) as Hn by lia; assert (x ≼ y) as Hx by solve_included; eapply cmra_validN_le, Hn; eapply cmra_validN_included, Hx; apply H end. ... ...
 ... ... @@ -140,10 +140,10 @@ Section cofe. Qed. Lemma contractive_S {B : cofeT} (f : A → B) `{!Contractive f} n x y : x ≡{n}≡ y → f x ≡{S n}≡ f y. Proof. eauto using contractive, dist_le with omega. Qed. Proof. eauto using contractive, dist_le with lia. Qed. Lemma contractive_0 {B : cofeT} (f : A → B) `{!Contractive f} x y : f x ≡{0}≡ f y. Proof. eauto using contractive with omega. Qed. Proof. eauto using contractive with lia. Qed. Global Instance contractive_ne {B : cofeT} (f : A → B) `{!Contractive f} n : Proper (dist n ==> dist n) f | 100. Proof. by intros x y ?; apply dist_S, contractive_S. Qed. ... ... @@ -153,7 +153,7 @@ Section cofe. Lemma conv_compl' n (c : chain A) : compl c ≡{n}≡ c (S n). Proof. transitivity (c n); first by apply conv_compl. symmetry. apply chain_cauchy. omega. apply chain_cauchy. lia. Qed. Lemma timeless_iff n (x : A) `{!Timeless x} y : x ≡ y ↔ x ≡{n}≡ y. Proof. ... ... @@ -175,9 +175,9 @@ Program Definition fixpoint_chain {A : cofeT} `{Inhabited A} (f : A → A) `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}. Next Obligation. intros A ? f ? n. induction n as [|n IH]; intros [|i] ?; simpl in *; try reflexivity || omega. induction n as [|n IH]; intros [|i] ?; simpl in *; try reflexivity || lia. - apply (contractive_0 f). - apply (contractive_S f), IH; auto with omega. - apply (contractive_S f), IH; auto with lia. Qed. Program Definition fixpoint_def {A : cofeT} `{Inhabited A} (f : A → A) ... ... @@ -560,7 +560,7 @@ Section discrete_cofe. - done. - done. - intros n c. rewrite /compl /discrete_compl /=; symmetry; apply (chain_cauchy c 0 n). omega. symmetry; apply (chain_cauchy c 0 n). lia. Qed. End discrete_cofe. ... ...
This diff is collapsed.
 ... ... @@ -270,7 +270,7 @@ Section properties. Lemma list_lookup_singletonM_ne i j x : i ≠ j → ({[ i := x ]} : list A) !! j = None ∨ ({[ i := x ]} : list A) !! j = Some ∅. Proof. revert j; induction i; intros [|j]; naive_solver auto with omega. Qed. Proof. revert j; induction i; intros [|j]; naive_solver auto with lia. Qed. Lemma list_singletonM_validN n i x : ✓{n} {[ i := x ]} ↔ ✓{n} x. Proof. rewrite list_lookup_validN. split. ... ...
 ... ... @@ -212,7 +212,7 @@ Proof. inversion Hs as [ ? ? ? Hs' ]. subst. econstructor. apply cmra_stepN_S; auto. * intros n n' mx my Hle Hn. assert (S n' ≠ 0) as Hnz by omega. assert (S n' ≠ 0) as Hnz by lia. revert Hle Hnz. induction Hn as [| n'' mx mz my Hs]; intros Hle Hnz; try congruence. destruct n'' as [| n'']. ... ... @@ -221,7 +221,7 @@ Proof. *** inversion Hn. subst. econstructor. eauto. *** eapply nsteps_once; eauto. ** inversion Hs as [? x z Hs']; subst. edestruct IHHn as (y1&y2&Hrel1&Hrel2&Hn'); try omega. edestruct IHHn as (y1&y2&Hrel1&Hrel2&Hn'); try lia. inversion Hrel1; subst. exists x, y2. split_and!; try (econstructor; done); eauto. ... ... @@ -283,7 +283,7 @@ Lemma option_stepN_None_Some `{Empty A, !CMRAUnit A} n a: Proof. intros Hs%nsteps_once. eapply (stepN_rel_adm_extract _ _ option_stepN_rel_admissible) in Hs as (a1&a2&Hrel1&Hrel2&Hsteps); last omega. last lia. inversion Hrel1 as [|? ? Hunit_like]. subst. specialize (Hunit_like ∅). rewrite right_id in Hunit_like *. intros Hequiv. rewrite -Hequiv. ... ... @@ -298,7 +298,7 @@ Lemma option_stepN_None_None `{Empty A, !CMRAUnit A} n: Proof. intros Hs%nsteps_once. eapply (stepN_rel_adm_extract _ _ option_stepN_rel_admissible) in Hs as (a1&a2&Hrel1&Hrel2&Hsteps); last omega. last lia. inversion Hrel1 as [|? ? Hunit_like]. subst. specialize (Hunit_like ∅). rewrite right_id in Hunit_like *. intros Hequiv. ... ... @@ -316,7 +316,7 @@ Lemma option_stepN_Some_None `{Empty A, !CMRAUnit A} n a: Proof. intros Hs%nsteps_once. eapply (stepN_rel_adm_extract _ _ option_stepN_rel_admissible) in Hs as (a1&a2&Hrel1&Hrel2&Hsteps); last omega. last lia. inversion Hrel1 as [? ? ? Hequiv1|]. subst. rewrite -Hequiv1. ... ... @@ -332,7 +332,7 @@ Lemma option_stepN_Some_Some `{Empty A, !CMRAUnit A} n a a': Proof. intros Hs%nsteps_once. eapply (stepN_rel_adm_extract _ _ option_stepN_rel_admissible) in Hs as (a1&a2&Hrel1&Hrel2&Hsteps); last omega. last lia. inversion Hrel1 as [? ? ? Hequiv1|]. subst. rewrite -Hequiv1. inversion Hrel2 as [? ? ? Hequiv2|]. subst. ... ...