Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
examples
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
examples
Commits
af1c8a72
Commit
af1c8a72
authored
5 years ago
by
Ralf Jung
Browse files
Options
Downloads
Plain Diff
Merge branch 'amin/erasure' into 'master'
Add erasure See merge request
!22
parents
14798a10
2447cee6
No related branches found
No related tags found
1 merge request
!22
Add erasure
Pipeline
#17993
canceled
5 years ago
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
_CoqProject
+1
-0
1 addition, 0 deletions
_CoqProject
theories/logatom/proph_erasure.v
+853
-0
853 additions, 0 deletions
theories/logatom/proph_erasure.v
with
854 additions
and
0 deletions
_CoqProject
+
1
−
0
View file @
af1c8a72
...
...
@@ -109,3 +109,4 @@ theories/logatom/conditional_increment/spec.v
theories/logatom/conditional_increment/cinc.v
theories/logatom/rdcss/rdcss.v
theories/logatom/rdcss/spec.v
theories/logatom/proph_erasure.v
This diff is collapsed.
Click to expand it.
theories/logatom/proph_erasure.v
0 → 100644
+
853
−
0
View file @
af1c8a72
From
iris
.
heap_lang
Require
Export
lang
notation
tactics
.
From
iris
.
program_logic
Require
Export
adequacy
.
(** This file contains the proof that prophecies can be safely erased
from programs. We erase a program by replacing prophecy identifiers
with the unit values and respectively adapt the NewProph and Resolve
expressions. We prove that if a program e is safe then so is the
erasure of e. *)
Fixpoint
erase_expr
(
e
:
expr
)
:
expr
:=
match
e
with
|
Val
v
=>
Val
(
erase_val
v
)
|
Var
x
=>
Var
x
|
Rec
f
x
e
=>
Rec
f
x
(
erase_expr
e
)
|
App
e1
e2
=>
App
(
erase_expr
e1
)
(
erase_expr
e2
)
|
UnOp
op
e
=>
UnOp
op
(
erase_expr
e
)
|
BinOp
op
e1
e2
=>
BinOp
op
(
erase_expr
e1
)
(
erase_expr
e2
)
|
If
e0
e1
e2
=>
If
(
erase_expr
e0
)
(
erase_expr
e1
)
(
erase_expr
e2
)
|
Pair
e1
e2
=>
Pair
(
erase_expr
e1
)
(
erase_expr
e2
)
|
Fst
e
=>
Fst
(
erase_expr
e
)
|
Snd
e
=>
Snd
(
erase_expr
e
)
|
InjL
e
=>
InjL
(
erase_expr
e
)
|
InjR
e
=>
InjR
(
erase_expr
e
)
|
Case
e0
e1
e2
=>
Case
(
erase_expr
e0
)
(
erase_expr
e1
)
(
erase_expr
e2
)
|
Fork
e
=>
Fork
(
erase_expr
e
)
|
AllocN
e1
e2
=>
AllocN
(
erase_expr
e1
)
(
erase_expr
e2
)
|
Load
e
=>
Load
(
erase_expr
e
)
|
Store
e1
e2
=>
Store
(
erase_expr
e1
)
(
erase_expr
e2
)
|
CmpXchg
e0
e1
e2
=>
CmpXchg
(
erase_expr
e0
)
(
erase_expr
e1
)
(
erase_expr
e2
)
|
FAA
e1
e2
=>
FAA
(
erase_expr
e1
)
(
erase_expr
e2
)
|
NewProph
=>
Skip
|
Resolve
e0
e1
e2
=>
Fst
(
Fst
(
erase_expr
e0
,
erase_expr
e1
,
erase_expr
e2
))
end
with
erase_val
(
v
:
val
)
:
val
:=
match
v
with
|
LitV
l
=>
LitV
match
l
with
|
LitProphecy
p
=>
LitUnit
|
_
=>
l
end
|
RecV
f
x
e
=>
RecV
f
x
(
erase_expr
e
)
|
PairV
v1
v2
=>
PairV
(
erase_val
v1
)
(
erase_val
v2
)
|
InjLV
v
=>
InjLV
(
erase_val
v
)
|
InjRV
v
=>
InjRV
(
erase_val
v
)
end
.
Lemma
erase_expr_subst
x
v
e
:
erase_expr
(
subst
x
v
e
)
=
subst
x
(
erase_val
v
)
(
erase_expr
e
)
with
erase_val_subst
x
v
(
w
:
val
)
:
erase_expr
(
subst
x
v
w
)
=
subst
x
(
erase_val
v
)
(
erase_val
w
)
.
Proof
.
-
destruct
e
;
simpl
;
try
destruct
decide
;
rewrite
?erase_expr_subst
?erase_val_subst
;
auto
.
-
by
destruct
v
;
simpl
.
Qed
.
Lemma
erase_expr_subst'
x
v
e
:
erase_expr
(
subst'
x
v
e
)
=
subst'
x
(
erase_val
v
)
(
erase_expr
e
)
.
Proof
.
destruct
x
;
first
done
;
apply
erase_expr_subst
.
Qed
.
Lemma
erase_val_subst'
x
v
(
w
:
val
)
:
erase_expr
(
subst
x
v
w
)
=
subst
x
(
erase_val
v
)
(
erase_val
w
)
.
Proof
.
destruct
x
;
first
done
;
apply
erase_val_subst
.
Qed
.
Fixpoint
erase_ectx_item
(
Ki
:
ectx_item
)
:
list
ectx_item
:=
match
Ki
with
|
AppLCtx
v2
=>
[
AppLCtx
(
erase_val
v2
)]
|
AppRCtx
e1
=>
[
AppRCtx
(
erase_expr
e1
)]
|
UnOpCtx
op
=>
[
UnOpCtx
op
]
|
BinOpLCtx
op
v2
=>
[
BinOpLCtx
op
(
erase_val
v2
)]
|
BinOpRCtx
op
e1
=>
[
BinOpRCtx
op
(
erase_expr
e1
)]
|
IfCtx
e1
e2
=>
[
IfCtx
(
erase_expr
e1
)
(
erase_expr
e2
)]
|
PairLCtx
v2
=>
[
PairLCtx
(
erase_val
v2
)]
|
PairRCtx
e1
=>
[
PairRCtx
(
erase_expr
e1
)]
|
FstCtx
=>
[
FstCtx
]
|
SndCtx
=>
[
SndCtx
]
|
InjLCtx
=>
[
InjLCtx
]
|
InjRCtx
=>
[
InjRCtx
]
|
CaseCtx
e1
e2
=>
[
CaseCtx
(
erase_expr
e1
)
(
erase_expr
e2
)]
|
AllocNLCtx
v2
=>
[
AllocNLCtx
(
erase_val
v2
)]
|
AllocNRCtx
e1
=>
[
AllocNRCtx
(
erase_expr
e1
)]
|
LoadCtx
=>
[
LoadCtx
]
|
StoreLCtx
v2
=>
[
StoreLCtx
(
erase_val
v2
)]
|
StoreRCtx
e1
=>
[
StoreRCtx
(
erase_expr
e1
)]
|
CmpXchgLCtx
v1
v2
=>
[
CmpXchgLCtx
(
erase_val
v1
)
(
erase_val
v2
)]
|
CmpXchgMCtx
e0
v2
=>
[
CmpXchgMCtx
(
erase_expr
e0
)
(
erase_val
v2
)]
|
CmpXchgRCtx
e0
e1
=>
[
CmpXchgRCtx
(
erase_expr
e0
)
(
erase_expr
e1
)]
|
FaaLCtx
v2
=>
[
FaaLCtx
(
erase_val
v2
)]
|
FaaRCtx
e1
=>
[
FaaRCtx
(
erase_expr
e1
)]
|
ResolveLCtx
ctx
v1
v2
=>
erase_ectx_item
ctx
++
[
PairLCtx
(
erase_val
v1
);
PairLCtx
(
erase_val
v2
);
FstCtx
;
FstCtx
]
|
ResolveMCtx
e0
v2
=>
[
PairRCtx
(
erase_expr
e0
);
PairLCtx
(
erase_val
v2
);
FstCtx
;
FstCtx
]
|
ResolveRCtx
e0
e1
=>
[
PairRCtx
(
erase_expr
e0
,
erase_expr
e1
);
FstCtx
;
FstCtx
]
end
.
Definition
erase_ectx
(
K
:
ectx
heap_ectx_lang
)
:
ectx
heap_ectx_lang
:=
foldr
(
λ
Ki
K
,
erase_ectx_item
Ki
++
K
)
[]
K
.
Definition
erase_tp
(
tp
:
list
expr
)
:
list
expr
:=
erase_expr
<$>
tp
.
Definition
erase_heap
(
h
:
gmap
loc
val
)
:
gmap
loc
val
:=
erase_val
<$>
h
.
Definition
erase_state
(
σ
:
state
)
:
state
:=
{|
heap
:=
erase_heap
(
heap
σ
);
used_proph_id
:=
∅
|}
.
Definition
erase_cfg
(
ρ
:
cfg
heap_lang
)
:
cfg
heap_lang
:=
(
erase_tp
ρ
.
1
,
erase_state
ρ
.
2
)
.
Lemma
erase_to_val
e
v
:
to_val
(
erase_expr
e
)
=
Some
v
→
∃
v'
,
to_val
e
=
Some
v'
∧
erase_val
v'
=
v
.
Proof
.
destruct
e
;
intros
?;
simplify_eq
/=
;
eauto
.
Qed
.
Lemma
erase_not_val
e
:
to_val
e
=
None
→
to_val
(
erase_expr
e
)
=
None
.
Proof
.
by
destruct
e
.
Qed
.
Lemma
erase_ectx_app
K
K'
:
erase_ectx
(
K
++
K'
)
=
erase_ectx
K
++
erase_ectx
K'
.
Proof
.
revert
K'
;
induction
K
as
[|
Ki
K
IHK
];
intros
K'
;
simpl
in
*
;
first
done
.
by
rewrite
IHK
assoc
.
Qed
.
Lemma
erase_ectx_expr
K
e
:
erase_expr
(
fill
K
e
)
=
fill
(
erase_ectx
K
)
(
erase_expr
e
)
.
Proof
.
revert
e
;
induction
K
as
[|
Ki
K
IHK
]
using
rev_ind
;
intros
e
;
simpl
in
*
;
rewrite
?erase_ectx_app
?fill_app
/=
;
first
done
.
induction
Ki
;
rewrite
/=
?IHK
?IHKi
?fill_app
//=.
Qed
.
(* helper lemma consider moving? *)
Lemma
ectx_prim_step
(
K
:
list
ectx_item
)
e1
σ1
κ
e2
σ2
ef
:
prim_step
e1
σ1
κ
e2
σ2
ef
→
prim_step
(
fill
K
e1
)
σ1
κ
(
fill
K
e2
)
σ2
ef
.
Proof
.
inversion
1
;
simpl
in
*
;
simplify_eq
.
by
rewrite
-!
fill_app
;
econstructor
.
Qed
.
(* helper lemma consider moving? *)
Lemma
rtc_congruence
{
A
B
}
(
f
:
A
→
B
)
(
R
:
A
→
A
→
Prop
)
(
R'
:
B
→
B
→
Prop
)
x
y
:
(
∀
x
y
,
R
x
y
→
R'
(
f
x
)
(
f
y
))
→
rtc
R
x
y
→
rtc
R'
(
f
x
)
(
f
y
)
.
Proof
.
intros
Hcng
.
induction
1
as
[|
e1
em
e2
?];
simpl
in
*
;
first
done
.
etrans
;
last
done
.
by
apply
rtc_once
,
Hcng
.
Qed
.
(* helper lemma consider moving? *)
Lemma
rtc_Ectx_pure_step
(
K
:
list
ectx_item
)
e1
e2
:
rtc
pure_step
e1
e2
→
rtc
pure_step
(
fill
K
e1
)
(
fill
K
e2
)
.
Proof
.
apply
rtc_congruence
.
by
intros
;
eapply
pure_step_ctx
;
first
typeclasses
eauto
.
Qed
.
(* helper lemma consider moving? *)
Definition
is_safe
e
σ
:=
is_Some
(
to_val
e
)
∨
reducible
e
σ
.
(* helper lemma consider moving? *)
Lemma
is_safe_under_ectx
K
e
σ
:
is_safe
(
fill
K
e
)
σ
→
is_safe
e
σ
.
Proof
.
rewrite
/
is_safe
/
reducible
/=.
intros
[?|(?
&
?
&
?
&
?
&
Hstp
)];
simpl
in
*
;
first
by
left
;
eapply
fill_val
.
destruct
(
to_val
e
)
eqn
:
Hval
;
first
by
left
;
eauto
.
inversion
Hstp
as
[
K'
e1'
?
He
];
simpl
in
*
;
simplify_eq
.
edestruct
(
step_by_val
K
K'
e
e1'
);
eauto
;
simplify_eq
.
rewrite
-
fill_comp
in
He
;
apply
fill_inj
in
He
;
simplify_eq
.
right
;
eauto
10
using
Ectx_step
.
Qed
.
(* helper lemma consider moving? *)
Lemma
head_step_safe
e
σ
κ
e'
σ'
efs
:
head_step
e
σ
κ
e'
σ'
efs
→
is_safe
e
σ
.
Proof
.
rewrite
/
is_safe
/
reducible
/=.
eauto
10
using
head_prim_step
.
Qed
.
(* helper lemma consider moving? *)
Lemma
prim_step_safe
e
σ
κ
e'
σ'
efs
:
prim_step
e
σ
κ
e'
σ'
efs
→
is_safe
e
σ
.
Proof
.
rewrite
/
is_safe
/
reducible
/=.
eauto
10
.
Qed
.
Lemma
val_for_compare_erase
v1
v2
:
val_for_compare
v1
=
val_for_compare
v2
↔
val_for_compare
(
erase_val
v1
)
=
val_for_compare
(
erase_val
v2
)
.
Proof
.
revert
v2
;
induction
v1
;
induction
v2
;
split
;
intros
Ho
;
simpl
in
*
;
repeat
case_match
;
simpl
in
*
;
simplify_eq
;
eauto
;
firstorder
.
Qed
.
Lemma
val_for_compare_erase_bdec
v1
v2
:
bool_decide
(
val_for_compare
v1
=
val_for_compare
v2
)
=
bool_decide
(
val_for_compare
(
erase_val
v1
)
=
val_for_compare
(
erase_val
v2
))
.
Proof
.
by
apply
bool_decide_iff
;
rewrite
val_for_compare_erase
.
Qed
.
Lemma
vals_cmpxchg_compare_safe_erase
v1
v2
:
vals_cmpxchg_compare_safe
(
erase_val
v1
)
(
erase_val
v2
)
↔
vals_cmpxchg_compare_safe
v1
v2
.
Proof
.
by
destruct
v1
;
destruct
v2
;
repeat
(
done
||
simpl
;
case_match
)
.
Qed
.
(** if un_op_eval succeeds on erased value,
the so should it on the original value. *)
Lemma
un_op_eval_erase
op
v
v'
:
un_op_eval
op
(
erase_val
v
)
=
Some
v'
↔
∃
w
,
un_op_eval
op
v
=
Some
w
∧
erase_val
w
=
v'
.
Proof
.
destruct
op
;
simpl
;
repeat
case_match
;
(
split
;
[
intros
?|
intros
[?
[?
?]]]);
simplify_eq
;
simpl
in
*
;
simplify_eq
;
eauto
.
Qed
.
(** if unbin_op_eval succeeds on erased value,
then so should it on the original value. *)
Lemma
bin_op_eval_erase
op
v1
v2
v'
:
bin_op_eval
op
(
erase_val
v1
)
(
erase_val
v2
)
=
Some
v'
↔
∃
w
,
bin_op_eval
op
v1
v2
=
Some
w
∧
erase_val
w
=
v'
.
Proof
.
rewrite
/
bin_op_eval
/
bin_op_eval_int
/
bin_op_eval_bool
;
destruct
decide
;
simpl
;
repeat
case_match
;
(
split
;
[
intros
?|
intros
[?
[?
?]]]);
simplify_eq
;
simpl
in
*
;
simplify_eq
;
eauto
.
-
eexists
_;
split
;
eauto
;
simpl
.
erewrite
bool_decide_iff
;
first
by
eauto
.
by
rewrite
val_for_compare_erase
.
-
repeat
f_equal
.
erewrite
bool_decide_iff
;
first
by
eauto
.
by
rewrite
-
val_for_compare_erase
.
Qed
.
Lemma
erase_heap_lookup
h
l
:
(
erase_heap
h
)
!!
l
=
None
↔
h
!!
l
=
None
.
Proof
.
rewrite
lookup_fmap
;
by
destruct
(
h
!!
l
)
.
Qed
.
Lemma
erase_heap_lookup'
h
l
:
(
erase_heap
h
)
!!
l
=
erase_val
<$>
h
!!
l
.
Proof
.
by
rewrite
lookup_fmap
.
Qed
.
Lemma
erase_heap_insert
h
l
v
:
erase_heap
(
<
[
l
:=
v
]
>
h
)
=
<
[
l
:=
erase_val
v
]
>
(
erase_heap
h
)
.
Proof
.
by
rewrite
/
erase_heap
fmap_insert
.
Qed
.
Lemma
fmap_heap_array
f
l
vs
:
f
<$>
heap_array
l
vs
=
heap_array
l
(
f
<$>
vs
)
.
Proof
.
revert
l
;
induction
vs
as
[|
v
vs
IHvs
];
intros
l
;
first
by
rewrite
/=
fmap_empty
.
by
rewrite
/=
-!
insert_union_singleton_l
!
fmap_insert
IHvs
.
Qed
.
Lemma
erase_heap_array
l
n
v
σ
:
erase_heap
(
heap_array
l
(
replicate
(
Z
.
to_nat
n
)
v
)
∪
heap
σ
)
=
heap_array
l
(
replicate
(
Z
.
to_nat
n
)
(
erase_val
v
))
∪
(
erase_heap
(
heap
σ
))
.
Proof
.
apply
map_eq
=>
i
.
rewrite
/
erase_heap
lookup_fmap
!
lookup_union
-
fmap_replicate
-
fmap_heap_array
!
lookup_fmap
.
by
destruct
(
heap_array
l
(
replicate
(
Z
.
to_nat
n
)
v
)
!!
i
);
destruct
(
heap
σ
!!
i
)
.
Qed
.
Lemma
erase_state_init
l
n
v
σ
:
erase_state
(
state_init_heap
l
n
v
σ
)
=
state_init_heap
l
n
(
erase_val
v
)
(
erase_state
σ
)
.
Proof
.
by
rewrite
/
erase_state
/
state_init_heap
/=
erase_heap_array
.
Qed
.
Ltac
simplify_erasure
:=
let
is_constructor
A
:=
let
HF
:=
fresh
in
pose
(
match
A
with
|
_
=>
A
end
)
as
HF
;
(
simpl
in
HF
);
unify
HF
A
;
clear
HF
in
lazymatch
goal
with
|
H
:
erase_expr
?A
=
Val
?B
|
-
_
=>
destruct
A
|
H
:
Val
?B
=
erase_expr
?A
|
-
_
=>
destruct
A
|
H
:
_
=
erase_val
?A
|
-
_
=>
destruct
A
|
H
:
erase_val
?A
=
_
|
-
_
=>
destruct
A
|
H
:
erase_expr
?A
=
?B
|
-
_
=>
lazymatch
B
with
|
fill
_
_
=>
fail
|
context
[
fill
_
_]
=>
destruct
A
|
_
=>
is_constructor
B
;
destruct
A
end
|
H
:
?B
=
erase_expr
?A
|
-
_
=>
lazymatch
B
with
|
fill
_
_
=>
fail
|
context
[
fill
_
_]
=>
destruct
A
|
_
=>
is_constructor
B
;
destruct
A
end
|
H
:
Val
_
=
fill
?K
?e
|
-
_
=>
edestruct
(
to_val_fill_some
K
e
);
first
(
by
rewrite
-
H
;
eauto
)
|
H
:
head_step
(
Val
_)
_
_
_
_
_
|
-
_
=>
apply
val_head_stuck
in
H
|
H
:
Rec
_
_
_
=
fill
?K
_
|
-
_
=>
destruct
K
as
[|[]
?
_]
using
rev_ind
;
simpl
in
*
;
rewrite
?fill_app
in
H
|
H
:
un_op_eval
_
(
erase_val
_)
=
Some
_
|
-
_
=>
apply
un_op_eval_erase
in
H
as
[?
[?
?]]
|
H
:
bin_op_eval
_
(
erase_val
_)
(
erase_val
_)
=
Some
_
|
-
_
=>
apply
bin_op_eval_erase
in
H
as
[?
[?
?]]
|
H
:
context
[
erase_heap
(
heap
_)
!!
_]
|
-
_
=>
rewrite
/
erase_heap
lookup_fmap
in
H
|
H
:
_
<$>
(
?B
!!
?C
)
=
Some
_
|
-
_
=>
let
Hf
:=
fresh
in
destruct
(
B
!!
C
)
eqn
:
Hf
;
simpl
in
H
;
try
done
|
H
:
is_Some
(_
<$>
(
?B
!!
?C
))
|
-
_
=>
destruct
H
as
[?
?]
end
;
simplify_eq
/=.
Definition
head_steps_to_erasure_of
(
e1
:
expr
)
(
σ1
:
state
)
(
e2
:
expr
)
(
σ2
:
state
)
(
efs
:
list
expr
)
:=
∃
κ'
e2'
σ2'
efs'
,
head_step
e1
σ1
κ'
e2'
σ2'
efs'
∧
erase_expr
e2'
=
e2
∧
erase_state
σ2'
=
σ2
∧
erase_tp
efs'
=
efs
.
(** When the erased program makes a head step, so does the original program. *)
Lemma
erased_head_step_head_step
e1
σ1
κ
e2
σ2
efs
:
head_step
(
erase_expr
e1
)
(
erase_state
σ1
)
κ
e2
σ2
efs
→
head_steps_to_erasure_of
e1
σ1
e2
σ2
efs
.
Proof
.
intros
Hstp
;
rewrite
/
head_steps_to_erasure_of
.
inversion
Hstp
;
(
repeat
((
repeat
simplify_erasure
);
try
case_match
;
simplify_eq
));
try
(
by
(
eexists
_,
_,
_,
_;
simpl
;
split
;
first
match
goal
with
|
|
-
head_step
NewProph
_
_
_
_
_
=>
by
apply
new_proph_id_fresh
|
_
=>
by
econstructor
;
eauto
using
erase_heap_lookup
,
val_for_compare_erase
end
;
try
rewrite
-
val_for_compare_erase
;
rewrite
?erase_expr_subst'
/
erase_state
?erase_heap_insert
/=
;
eauto
using
erase_state_init
));
[|
|]
.
-
(* case of allocN *)
eexists
_,
_,
_,
_;
simpl
;
split
;
first
econstructor
;
try
rewrite
-
val_for_compare_erase
;
try
setoid_rewrite
<-
erase_heap_lookup
;
rewrite
?erase_heap_insert
/=
;
eauto
using
erase_state_init
.
-
(* case of CmpXchg succeeding *)
match
goal
with
|
H
:
bool_decide
(
val_for_compare
(
erase_val
_)
=
val_for_compare
(
erase_val
_))
=
_
|
-
_
=>
rename
H
into
Hvfc
;
rewrite
-
val_for_compare_erase_bdec
in
Hvfc
end
.
eexists
_,
_,
_,
_;
simpl
;
split
.
{
econstructor
;
first
rewrite
-
vals_cmpxchg_compare_safe_erase
;
eauto
.
}
rewrite
Hvfc
/
erase_state
?erase_heap_insert
/=
;
eauto
.
-
(* case of CmpXchg failing *)
match
goal
with
|
H
:
bool_decide
(
val_for_compare
(
erase_val
_)
=
val_for_compare
(
erase_val
_))
=
_
|
-
_
=>
rename
H
into
Hvfc
;
rewrite
-
val_for_compare_erase_bdec
in
Hvfc
end
.
eexists
_,
_,
_,
_;
simpl
;
split
.
{
econstructor
;
first
rewrite
-
vals_cmpxchg_compare_safe_erase
;
eauto
.
}
rewrite
Hvfc
;
eauto
.
Qed
.
Lemma
fill_to_resolve
e0
(
v1
v2
:
val
)
K
e'
:
to_val
e'
=
None
→
Resolve
e0
v1
v2
=
fill
K
e'
→
K
=
[]
∨
∃
K'
Ki
,
K
=
K'
++
[
ResolveLCtx
Ki
v1
v2
]
.
Proof
.
intros
Hnv
Hrs
;
simpl
in
*.
destruct
K
as
[|
Ki
K
_]
using
rev_ind
;
first
by
left
.
rewrite
fill_app
in
Hrs
.
destruct
Ki
;
simplify_eq
/=
;
eauto
;
simplify_erasure
.
Qed
.
(* helper lemma, move? *)
Lemma
head_step_to_val
e
σ
κ
(
v
:
val
)
σ'
efs
:
head_step
e
σ
κ
v
σ'
efs
→
∀
σ'
κ'
e'
σ''
efs'
,
head_step
e
σ'
κ'
e'
σ''
efs'
→
is_Some
(
to_val
e'
)
.
Proof
.
inversion
1
;
simplify_eq
/=
=>
?????;
inversion
1
;
simplify_eq
;
eauto
;
[]
.
match
goal
with
|
H
:
_
=
?A
|
-
is_Some
(
to_val
?A
)
=>
rewrite
-
H
end
;
eauto
.
Qed
.
Ltac
solve_for_trivial_pure_head_step
:=
let
helper
:=
apply
rtc_once
;
apply
pure_head_step_pure_step
;
split
;
rewrite
/
head_reducible_no_obs
/=
;
first
(
by
eauto
using
head_step
);
intros
?????;
inversion
1
;
simplify_eq
;
eauto
in
let
go
K
e
:=
((
etrans
;
first
(
apply
(
rtc_Ectx_pure_step
K
);
helper
));
simpl
)
in
repeat
match
goal
with
|
|
-
rtc
pure_step
?A
_
=>
reshape_expr
A
go
|
|
-
rtc
pure_step
?A
?A
=>
done
end
.
Lemma
projs_pure_steps
(
v0
v1
v2
:
val
)
:
rtc
pure_step
(
Fst
(
Fst
(
v0
,
v1
,
v2
)))
v0
.
Proof
.
solve_for_trivial_pure_head_step
.
Qed
.
Lemma
prim_step_strip_ctx
K
K'
e1
σ1
κ
e2
σ2
efs
κ'
e2'
σ2'
efs'
:
head_step
e1
σ1
κ'
e2'
σ2'
efs'
→
prim_step
(
fill
K
(
fill
K'
e1
))
σ1
κ
e2
σ2
efs
→
∃
e2''
,
e2
=
fill
K
e2''
∧
prim_step
(
fill
K'
e1
)
σ1
κ
e2''
σ2
efs
.
Proof
.
rewrite
-
fill_app
=>
Hhstp
Hpstp
.
inversion
Hpstp
as
[
K''
??
HK''
?
hhstp'
];
simplify_eq
/=.
edestruct
(
step_by_val
(
K'
++
K
))
as
[
K3
HK3
];
eauto
using
val_head_stuck
;
simplify_eq
/=.
rewrite
!
fill_app
in
HK''
;
repeat
apply
fill_inj
in
HK''
;
simplify_eq
.
rewrite
!
fill_app
.
eexists
;
split
;
first
done
.
rewrite
-!
fill_app
.
by
eapply
Ectx_step'
.
Qed
.
Lemma
Resolve_3_vals_unsafe
(
v0
v1
v2
:
val
)
σ
:
is_safe
(
Resolve
v0
v1
v2
)
σ
→
False
.
Proof
.
intros
[[?
?]|(?
&
?
&
?
&
?
&
Hstp
)];
simpl
in
*
;
first
done
.
inversion
Hstp
as
[???
Hfill
?
Hhstp'
];
simpl
in
*
;
simplify_eq
.
destruct
K
as
[|
Ki
K
_]
using
rev_ind
;
simpl
in
*
;
simplify_eq
.
-
inversion
Hhstp'
;
simplify_eq
.
match
goal
with
|
H
:
head_step
(
Val
_)
_
_
_
_
_
|
-
_
=>
by
apply
val_head_stuck
in
H
end
.
-
clear
Hstp
;
rewrite
fill_app
/=
in
Hfill
.
apply
val_head_stuck
in
Hhstp'
.
destruct
Ki
;
simpl
in
*
;
simplify_eq
;
match
goal
with
|
H
:
Val
_
=
fill_item
?Ki
?e
|
-
_
=>
by
destruct
(
fill_item_val
Ki
e
)
as
[?
[
->
->
]
%
to_val_fill_some
];
first
by
rewrite
-
H
;
eauto
|
H
:
Val
_
=
fill
?K
?e
|
-
_
=>
edestruct
(
to_val_fill_some
K
e
);
first
(
by
rewrite
-
H
;
eauto
);
simplify_eq
end
.
Qed
.
(** (e1, σ1) takes a [prim_step] to (e2', σ2') forking threads efs'
such that σ2 is the erasure of σ2' and efs is the erasure of
efs'. Furthermore, e2 takes [pure_steps] to match up with e2. It is
crucial for us that e2 takes [pure_step]s because we need to know
that e2 does not get stuck and that the steps are deterministic.
Essentially, the main part of the erasure proof's argument is that if
the erased program takes steps, then the original program also takes
matching steps. This however, does not entirely hold. In cases where
the erasure of [Resovle] takes a step, the original program
immediately produces the value while the erased program has to still
perform projections [Fst] to get the result (see the [Resolve] case
of [erase_expr]). For this purpose, we prove that in those cases (and
also in general) the erased program also takes a number of (possibly
zero) steps so that the original and the erased programs are matched
up again. *)
Definition
prim_step_matched_by_erased_steps
e1
σ1
e2
σ2
efs
:=
∃
e2'
σ2'
κ'
efs'
e2''
,
prim_step
e1
σ1
κ'
e2'
σ2'
efs'
∧
rtc
pure_step
e2
e2''
∧
erase_expr
e2'
=
e2''
∧
erase_state
σ2'
=
σ2
∧
erase_tp
efs'
=
efs
.
Lemma
prim_step_matched_by_erased_steps_ectx
K
e1
σ1
e2
σ2
efs
:
prim_step_matched_by_erased_steps
e1
σ1
e2
σ2
efs
→
prim_step_matched_by_erased_steps
(
fill
K
e1
)
σ1
(
fill
(
erase_ectx
K
)
e2
)
σ2
efs
.
Proof
.
intros
(?
&
?
&
?
&
?
&
?
&
?
&
?
&
?
&
?
&
?);
simplify_eq
/=.
eexists
_,
_,
_,
_,
_;
repeat
split
.
-
by
eapply
ectx_prim_step
.
-
by
rewrite
erase_ectx_expr
;
apply
rtc_Ectx_pure_step
.
Qed
.
Definition
is_Resolve
(
e
:
expr
)
:=
match
e
with
|
Resolve
_
_
_
=>
True
|
_
=>
False
end
.
Global
Instance
is_Resolve_dec
e
:
Decision
(
is_Resolve
e
)
.
Proof
.
destruct
e
;
solve_decision
.
Qed
.
Ltac
solve_is_safe
:=
match
goal
with
|
H
:
is_safe
?C
?B
|
-
is_safe
?A
?B
=>
let
tac
K
e
:=
by
(
apply
(
is_safe_under_ectx
K
))
in
reshape_expr
C
tac
|
H
:
head_step
?A
?B
_
_
_
_
|
-
is_safe
?A
?B
=>
by
eapply
head_step_safe
|
H
:
prim_step
?A
?B
_
_
_
_
|
-
is_safe
?A
?B
=>
by
eapply
prim_step_safe
end
.
Ltac
solve_prim_step_ectx
:=
match
goal
with
|
|
-
prim_step
?A
_
_
_
_
_
=>
let
tac
K
e
:=
lazymatch
K
with
[]
=>
fail
|
_
=>
(
apply
(
ectx_prim_step
K
))
end
in
reshape_expr
A
tac
;
eauto
end
.
Ltac
solve_rtc_pure_step_ectx
:=
match
goal
with
|
|
-
rtc
pure_step
?A
_
=>
let
tac
K
e
:=
lazymatch
K
with
[]
=>
fail
|
_
=>
(
apply
(
rtc_Ectx_pure_step
K
))
end
in
reshape_expr
A
tac
;
eauto
end
.
Lemma
non_resolve_prim_step_matched_by_erased_steps_ectx_item
Ki
e1
e1'
σ1
e2
σ2
efs
:
to_val
e1'
=
None
→
¬
is_Resolve
e1
→
is_safe
e1
σ1
→
erase_expr
e1
=
fill_item
Ki
e1'
→
(
∀
e1
,
erase_expr
e1
=
e1'
→
is_safe
e1
σ1
→
prim_step_matched_by_erased_steps
e1
σ1
e2
σ2
efs
)
→
prim_step_matched_by_erased_steps
e1
σ1
(
fill_item
Ki
e2
)
σ2
efs
.
Proof
.
intros
Hnv
Hnr
Hsf
He1
IH
.
destruct
Ki
;
repeat
simplify_erasure
;
try
done
;
match
goal
with
|
|
-
prim_step_matched_by_erased_steps
?A
_
_
_
_
=>
let
tac
K
e
:=
lazymatch
K
with
|
[]
=>
fail
|
_
=>
apply
(
prim_step_matched_by_erased_steps_ectx
K
)
end
in
reshape_expr
A
tac
;
apply
IH
;
[
done
|
solve_is_safe
]
end
.
Qed
.
Lemma
prim_step_matched_by_erased_steps_ectx_item
Ki
K
e1
e1'
σ1
e2
σ2
efs
κ
:
head_step
e1'
(
erase_state
σ1
)
κ
e2
σ2
efs
→
is_safe
e1
σ1
→
erase_expr
e1
=
fill_item
Ki
(
fill
K
e1'
)
→
(
∀
K'
e1
,
length
K'
≤
length
K
→
erase_expr
e1
=
(
fill
K'
e1'
)
→
is_safe
e1
σ1
→
prim_step_matched_by_erased_steps
e1
σ1
(
fill
K'
e2
)
σ2
efs
)
→
prim_step_matched_by_erased_steps
e1
σ1
(
fill_item
Ki
(
fill
K
e2
))
σ2
efs
.
Proof
.
intros
Hhstp
Hsf
He1
IH
;
simpl
in
*.
(** Case split on whether e1 is a [Resolve] expression. *)
destruct
(
decide
(
is_Resolve
e1
));
last
first
.
{
(** e1 is not a [Resolve] expression. *)
eapply
non_resolve_prim_step_matched_by_erased_steps_ectx_item
;
eauto
;
[|]
.
-
by
eapply
fill_not_val
,
val_head_stuck
.
-
intros
;
eapply
(
IH
K
);
simpl
;
eauto
with
lia
.
}
(** e1 is a [Resolve] expression. *)
destruct
Ki
;
repeat
simplify_erasure
;
try
done
;
[]
.
destruct
K
as
[|
Ki
K
_]
using
rev_ind
;
simplify_eq
/=
;
[|]
.
{
(* case where (Fst (erase_expr e1_1, erase_expr e1_2, erase_expr e1_3)) *)
(* takes a head_step; it is impossible! *)
inversion
Hhstp
.
}
rewrite
fill_app
/=
in
He1
.
destruct
Ki
;
simplify_eq
/=
;
rewrite
fill_app
/=.
destruct
K
as
[|
Ki
K
_]
using
rev_ind
;
simplify_eq
/=
;
[|]
.
{
(* case where (erase_expr e1_1, erase_expr e1_2, erase_expr e1_3) *)
(* takes a head_step; it is impossible! *)
inversion
Hhstp
.
}
rewrite
fill_app
/=
in
He1
.
destruct
Ki
;
simplify_eq
/=
;
rewrite
fill_app
/=.
-
destruct
K
as
[|
Ki
K
_]
using
rev_ind
;
simplify_eq
/=
;
[|]
.
{
(** [Resolve v0 v1 v2] is not safe! *)
inversion
Hhstp
;
repeat
simplify_erasure
.
exfalso
;
eauto
using
Resolve_3_vals_unsafe
.
}
rewrite
fill_app
/=
in
He1
.
destruct
Ki
;
simplify_eq
/=
;
rewrite
fill_app
/=.
+
(** e1 is of the form ([Resolve] e10 e11 v0) and e11 takes a prim_step. *)
destruct
Hsf
as
[[?
?]|
(?
&
?
&
?
&
?
&
Hrpstp
)];
first
done
;
simpl
in
*.
inversion
Hrpstp
as
[???
Hrs
?
Hhstp'
];
simpl
in
*
;
simplify_eq
.
repeat
simplify_erasure
.
edestruct
fill_to_resolve
as
[?|[
K'
[
Ki
HK
]]];
eauto
;
[
by
eapply
val_head_stuck
|
|];
simplify_eq
/=.
*
(** e1 is of the form ([Resolve] e10 e11 v0) and e11 takes a head_step. *)
inversion
Hhstp'
;
simplify_eq
.
edestruct
(
IH
K
)
as
(?
&
?
&
?
&
?
&
?
&
Hpstp
&
?
&
?
&
?
&
?);
[
rewrite
!
app_length
/=
;
lia
|
done
|
by
eapply
head_step_safe
|];
simplify_eq
/=.
apply
head_reducible_prim_step
in
Hpstp
;
simpl
in
*
;
last
rewrite
/
head_reducible
/=
;
eauto
10
.
edestruct
head_step_to_val
as
[?
?
%
of_to_val
];
eauto
;
simplify_eq
.
eexists
_,
_,
_,
_,
_;
repeat
split
;
first
(
by
apply
head_prim_step
;
econstructor
;
eauto
);
auto
.
etrans
.
{
by
apply
(
rtc_Ectx_pure_step
[
PairLCtx
_;
PairLCtx
_;
FstCtx
;
FstCtx
])
.
}
apply
projs_pure_steps
.
*
(** e1 is of the form ([Resolve] e10 v v0) and e10 takes a
(non-head) prim_step. *)
rewrite
fill_app
in
Hrs
;
simplify_eq
/=.
edestruct
(
IH
K
)
as
(?
&
?
&
?
&
?
&
?
&
Hpstp
&
?
&
?
&
?
&
?);
[
rewrite
!
app_length
;
lia
|
done
|
|]
.
{
change
(
fill_item
Ki
)
with
(
fill
[
Ki
])
.
by
rewrite
-
fill_app
;
eapply
prim_step_safe
,
Ectx_step
.
}
simplify_eq
/=.
eapply
(
prim_step_strip_ctx
[_])
in
Hpstp
as
[
e2''
[
He2''
Hpstp
]];
last
done
;
simplify_eq
/=.
eexists
_,
_,
_,
_,
_;
repeat
split
;
eauto
;
first
by
apply
(
ectx_prim_step
[
ResolveLCtx
_
_
_])
.
by
apply
(
rtc_Ectx_pure_step
[
PairLCtx
_;
PairLCtx
_;
FstCtx
;
FstCtx
])
.
+
(** e1 is of the form ([Resolve] e1_ e1_2 v) and e1_2 takes a prim_step. *)
repeat
simplify_erasure
.
apply
(
prim_step_matched_by_erased_steps_ectx
[
ResolveMCtx
_
_])
.
apply
IH
;
[
rewrite
!
app_length
/=
;
lia
|
done
|
solve_is_safe
]
.
-
(** e1 is of the form ([Resolve] e1_ e1_2 e13) and e1_3 takes a prim_step. *)
apply
(
prim_step_matched_by_erased_steps_ectx
[
ResolveRCtx
_
_])
.
apply
IH
;
[
rewrite
!
app_length
/=
;
lia
|
done
|
solve_is_safe
]
.
Qed
.
Lemma
erased_prim_step_prim_step
e1
σ1
κ
e2
σ2
efs
:
prim_step
(
erase_expr
e1
)
(
erase_state
σ1
)
κ
e2
σ2
efs
→
is_safe
e1
σ1
→
prim_step_matched_by_erased_steps
e1
σ1
e2
σ2
efs
.
Proof
.
intros
Hstp
He1sf
.
inversion
Hstp
as
[
K
e1'
e2'
He1
?
Hhstp
];
clear
Hstp
;
simpl
in
*
;
simplify_eq
.
set
(
len
:=
length
K
);
assert
(
length
K
=
len
)
as
Hlen
by
done
;
clearbody
len
.
revert
K
Hlen
e1
He1
He1sf
.
induction
len
as
[
m
IHm
]
using
lt_wf_ind
;
intros
K
Hlen
e1
He1
He1sf
;
simplify_eq
.
destruct
K
as
[|
Ki
K
_]
using
rev_ind
;
simpl
in
*
;
simplify_eq
.
{
apply
erased_head_step_head_step
in
Hhstp
as
(?
&
?
&
?
&
?
&
?
&
<-
&
?
&
<-
)
.
eexists
_,
_,
_,
_,
_;
repeat
split
;
first
(
by
apply
head_prim_step
);
auto
using
rtc_refl
.
}
rewrite
app_length
in
IHm
;
simpl
in
*.
rewrite
fill_app
/=
;
rewrite
fill_app
/=
in
He1
.
eapply
prim_step_matched_by_erased_steps_ectx_item
;
eauto
;
[]
.
{
intros
;
simpl
in
*
;
apply
(
IHm
(
length
K'
));
auto
with
lia
.
}
Qed
.
Lemma
head_step_erased_head_step
e1
σ1
κ
e2
σ2
ef
:
head_step
e1
σ1
κ
e2
σ2
ef
→
∃
e2'
σ2'
ef'
,
prim_step
(
erase_expr
e1
)
(
erase_state
σ1
)
[]
e2'
σ2'
ef'
.
Proof
.
induction
1
as
[|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|?????????
IH
];
simpl
in
*
;
simplify_eq
;
try
(
by
do
3
eexists
;
apply
head_prim_step
;
econstructor
);
[|
|
|
|
|
|
|]
.
-
(* UnOp *)
do
3
eexists
;
apply
head_prim_step
;
econstructor
.
by
apply
un_op_eval_erase
;
eauto
.
-
(* BinOp *)
do
3
eexists
;
apply
head_prim_step
;
econstructor
.
by
apply
bin_op_eval_erase
;
eauto
.
-
(* AllocN *)
do
3
eexists
;
apply
head_prim_step
;
econstructor
;
eauto
.
intros
;
rewrite
erase_heap_lookup
;
eauto
.
-
(* Load *)
do
3
eexists
;
apply
head_prim_step
;
econstructor
.
rewrite
/
erase_state
/
state_upd_heap
/=
erase_heap_lookup'
.
by
destruct
lookup
;
simplify_eq
.
-
(* Store *)
match
goal
with
|
H
:
is_Some
_
|
-
_
=>
inversion
H
end
.
do
3
eexists
;
apply
head_prim_step
;
econstructor
.
by
rewrite
/
erase_state
/
state_upd_heap
/=
erase_heap_lookup'
H0
;
eauto
.
-
(* CAS-fail *)
match
goal
with
|
H
:
vals_cmpxchg_compare_safe
?A
?B
|
-
_
=>
destruct
(
bool_decide
(
val_for_compare
A
=
val_for_compare
B
))
eqn
:
Heqvls
end
.
+
do
3
eexists
;
apply
head_prim_step
;
econstructor
;
last
(
by
eauto
);
first
(
by
apply
vals_cmpxchg_compare_safe_erase
);
[]
.
match
goal
with
|
H
:
heap
_
!!
_
=
_
|
-
_
=>
by
rewrite
/
erase_state
/
state_upd_heap
/=
erase_heap_lookup'
H
end
.
+
do
3
eexists
;
apply
head_prim_step
;
econstructor
;
last
(
by
eauto
);
first
(
by
apply
vals_cmpxchg_compare_safe_erase
);
[]
.
match
goal
with
|
H
:
heap
_
!!
_
=
_
|
-
_
=>
by
rewrite
/
erase_state
/
state_upd_heap
/=
erase_heap_lookup'
H
end
.
-
(* FAA *)
do
3
eexists
;
apply
head_prim_step
;
econstructor
.
by
rewrite
/
erase_state
/
state_upd_heap
/=
erase_heap_lookup'
H
.
-
(* Resolve *)
destruct
IH
as
(?
&
?
&
?
&
?)
.
eexists
_,
_,
_;
by
apply
(
ectx_prim_step
[
PairLCtx
_;
PairLCtx
_;
FstCtx
;
FstCtx
])
.
Qed
.
Lemma
reducible_erased_reducible
e
σ
:
reducible
e
σ
→
reducible
(
erase_expr
e
)
(
erase_state
σ
)
.
Proof
.
intros
(?
&
?
&
?
&
?
&
Hpstp
);
simpl
in
*.
inversion
Hpstp
;
simplify_eq
/=.
rewrite
erase_ectx_expr
.
edestruct
head_step_erased_head_step
as
(?
&
?
&
?
&
?);
first
done
;
simpl
in
*.
eexists
_,
_,
_,
_;
eapply
ectx_prim_step
;
eauto
.
Qed
.
Definition
erase_prop
(
φ
:
val
→
state
→
Prop
)
(
v
:
val
)
(
σ
:
state
)
:
Prop
:=
∃
v'
σ'
,
erase_val
v'
=
v
∧
erase_state
σ'
=
σ
∧
φ
v'
σ'
.
(* move to std++ perhaps? *)
Lemma
nsteps_inv_r
{
A
}
(
R
:
A
→
A
→
Prop
)
n
x
z
:
nsteps
R
(
S
n
)
x
z
→
∃
y
,
nsteps
R
n
x
y
∧
R
y
z
.
Proof
.
revert
x
z
;
induction
n
as
[|
n
IHn
];
intros
x
z
.
-
inversion
1
as
[|?
?
?
?
?
Hstps
];
inversion
Hstps
;
simplify_eq
.
by
eexists
;
split
;
first
constructor
.
-
inversion
1
as
[|?
?
?
?
?
Hstps
];
simplify_eq
.
apply
IHn
in
Hstps
as
[
w
[
Hstps
Hw
]]
.
eexists
;
split
;
last
done
.
econstructor
;
eauto
.
Qed
.
Definition
pure_step_tp
(
t1
t2
:
list
expr
)
:=
Forall2
(
rtc
pure_step
)
t1
t2
.
Lemma
rtc_pure_step_val
v
e
:
rtc
pure_step
(
of_val
v
)
e
→
to_val
e
=
Some
v
.
Proof
.
intros
?;
rewrite
<-
to_of_val
.
f_equal
;
symmetry
;
eapply
rtc_nf
;
eauto
.
intros
[?
[
Hstp
_]]
.
by
destruct
(
Hstp
inhabitant
)
as
(?
&
?
&
?
&
?
%
val_stuck
)
.
Qed
.
Lemma
pure_step_tp_safe
t1
t2
e1
σ
:
(
∀
e2
,
e2
∈
t2
→
is_safe
e2
σ
)
→
pure_step_tp
t1
(
erase_tp
t2
)
→
e1
∈
t1
→
is_safe
e1
(
erase_state
σ
)
.
Proof
.
intros
Ht2
Hpr
[
i
He1
]
%
elem_of_list_lookup_1
.
eapply
Forall2_lookup_l
in
Hpr
as
[
e2'
[
He2'
Hpr
]];
simpl
in
*
;
eauto
.
rewrite
/
erase_tp
list_lookup_fmap
in
He2'
.
destruct
(
t2
!!
i
)
eqn
:
He2
;
simplify_eq
/=.
apply
elem_of_list_lookup_2
,
Ht2
in
He2
.
clear
-
Hpr
He2
.
inversion
Hpr
as
[|???
[?
_]];
simplify_eq
.
-
destruct
He2
as
[[?
?
%
of_to_val
]|];
simplify_eq
/=
;
first
by
left
;
eauto
.
by
right
;
apply
reducible_erased_reducible
.
-
right
;
eauto
using
reducible_no_obs_reducible
.
Qed
.
Lemma
erased_step_pure_step_tp
t1
σ1
t2
σ2
t3
:
erased_step
(
t1
,
σ1
)
(
t2
,
σ2
)
→
pure_step_tp
t1
t3
→
(
σ1
=
σ2
∧
pure_step_tp
t2
t3
)
∨
(
∃
(
i
:
nat
)
e
t2'
efs
e'
κ
,
t3
!!
i
=
Some
e
∧
t1
!!
i
=
Some
e
∧
length
t1
=
length
t2'
∧
t2
=
t2'
++
efs
∧
(
∀
j
,
j
≠
i
→
t1
!!
j
=
t2'
!!
j
)
∧
t2'
!!
i
=
Some
e'
∧
prim_step
e
σ1
κ
e'
σ2
efs
)
.
Proof
.
intros
[
κ
Hes
]
Hps
;
simpl
in
*.
inversion
Hes
as
[
e
σ
e'
σ'
?
t11
t12
??
Hpstp
];
simplify_eq
/=.
edestruct
@
Forall2_lookup_l
as
[
e''
[
Hlu
He''
]];
first
exact
Hps
;
first
apply
list_lookup_middle
;
first
done
.
inversion
He''
as
[|???
[_
Hprs
]];
simplify_eq
/=.
-
right
;
eexists
(
length
t11
),
e''
,
(
t11
++
e'
::
t12
),
_,
_,
_;
repeat
split
;
eauto
;
rewrite
?app_length
-
?app_assoc
;
eauto
using
list_lookup_middle
.
intros
j
Hneq
.
destruct
(
decide
(
j
<
length
t11
)
%
nat
)
.
+
rewrite
!
lookup_app_l
//.
+
rewrite
!
lookup_app_r
;
try
lia
.
by
destruct
(
j
-
length
t11
)
%
nat
eqn
:
Heq
;
first
lia
.
-
edestruct
Hprs
as
(?
&
?
&
?
&
?);
eauto
;
simplify_eq
.
left
;
split
;
first
done
;
rewrite
app_nil_r
.
apply
Forall2_app_inv_l
in
Hps
as
(
t31
&
t32
&
Hps1
&
Hps2
&
->
)
.
apply
Forall2_app
;
first
done
.
apply
Forall2_cons_inv_l
in
Hps2
as
(
e'
&
t32'
&
?
&
?
&
?);
simplify_eq
.
apply
Forall2_cons
;
last
done
.
rewrite
list_lookup_middle
in
Hlu
;
last
by
eapply
Forall2_length
.
by
simplify_eq
.
Qed
.
(* move to std++ or find an easy way to prove this! *)
Lemma
elem_of_list_split_length
{
A
:
Type
}
(
l
:
list
A
)
i
(
x
:
A
)
:
l
!!
i
=
Some
x
→
∃
l1
l2
:
list
A
,
l
=
l1
++
x
::
l2
∧
i
=
length
l1
.
Proof
.
revert
i
;
induction
l
as
[|
a
l
IHl
];
intros
i
Hl
;
first
done
.
destruct
i
;
simplify_eq
/=.
-
exists
[];
eauto
.
-
destruct
(
IHl
_
Hl
)
as
(?
&
?
&
?
&
?);
simplify_eq
/=.
eexists
(
a
::
_);
eauto
.
Qed
.
Lemma
erased_steps_extend
i
t1
σ1
t2
σ2
(
e
:
expr
)
κ
e'
σ3
efs
:
rtc
erased_step
(
t1
,
σ1
)
(
t2
,
σ2
)
→
t2
!!
i
=
Some
e
→
prim_step
e
σ2
κ
e'
σ3
efs
→
rtc
erased_step
(
t1
,
σ1
)
(
<
[
i
:=
e'
]
>
t2
++
efs
,
σ3
)
.
Proof
.
intros
Hes
Hlu
Hpstp
;
simpl
in
*.
etrans
;
first
done
.
apply
rtc_once
.
edestruct
(
elem_of_list_split_length
t2
)
as
(
t21
&
t22
&
?
&
?);
first
(
by
eauto
using
elem_of_list_lookup_2
);
simplify_eq
.
do
2
econstructor
;
eauto
.
replace
(
length
t21
)
with
(
length
t21
+
0
)
%
nat
by
lia
.
by
rewrite
insert_app_r
/=
-
app_assoc
/=.
Qed
.
Lemma
erasure
e
σ
φ
:
adequate
NotStuck
e
σ
φ
→
adequate
NotStuck
(
erase_expr
e
)
(
erase_state
σ
)
(
erase_prop
φ
)
.
Proof
.
intros
Hade
;
simpl
in
*.
cut
(
∀
t2
σ2
,
rtc
erased_step
([
erase_expr
e
],
erase_state
σ
)
(
t2
,
σ2
)
→
(
∃
t2'
t2''
σ2'
,
rtc
erased_step
([
e
],
σ
)
(
t2''
,
σ2'
)
∧
t2'
=
erase_tp
t2''
∧
σ2
=
erase_state
σ2'
∧
pure_step_tp
t2
t2'
))
.
{
intros
Hreach
;
split
;
simpl
in
*.
-
intros
?
?
?
Hrtc
;
edestruct
(
Hreach
_
_
Hrtc
)
as
(
t2'
&
t2''
&
σ2'
&
Hos
&
Ht2'
&
Hσ2
&
Hptp
);
simplify_eq
/=.
apply
Forall2_cons_inv_l
in
Hptp
as
(
oe
&
t3
&
Hoe
%
rtc_pure_step_val
&
_
&
?);
destruct
t2''
;
simplify_eq
/=.
apply
erase_to_val
in
Hoe
as
(?
&
?
%
of_to_val
&
?);
simplify_eq
.
pose
proof
(
adequate_result
_
_
_
_
Hade
_
_
_
Hos
);
rewrite
/
erase_prop
;
eauto
.
-
intros
?
?
?
Hs
Hrtc
He2
;
edestruct
(
Hreach
_
_
Hrtc
)
as
(
t2'
&
t2''
&
σ2'
&
Hos
&
Ht2'
&
Hσ2
&
Hptp
);
simplify_eq
/=.
eapply
pure_step_tp_safe
;
[|
done
..]
.
intros
e2'
He2'
.
apply
(
adequate_not_stuck
_
_
_
_
Hade
_
_
_
eq_refl
Hos
He2'
)
.
}
intros
t2
σ2
[
n
Hstps
]
%
rtc_nsteps
;
simpl
in
*
;
revert
t2
σ2
Hstps
.
induction
n
.
{
intros
t2
σ2
Hstps
;
inversion
Hstps
;
simplify_eq
/=.
repeat
econstructor
.
}
intros
t2
σ2
Hstps
.
apply
nsteps_inv_r
in
Hstps
as
[[
t3
σ3
]
[
Hstps
Hρ
]];
simpl
in
*.
destruct
(
IHn
_
_
Hstps
)
as
(
t2'
&
t2''
&
σ2'
&
Hostps
&
?
&
?
&
Hprstps
);
simplify_eq
.
edestruct
erased_step_pure_step_tp
as
[[?
Hint
]|
Hext
];
simplify_eq
/=
;
eauto
10
;
[|
done
..]
.
destruct
Hext
as
(
i
&
ei
&
t2'
&
efs
&
e'
&
κ
&
Hi1
&
Hi2
&
Hlen
&
?
&
Hlu
&
Hi3
&
Hpstp
);
simplify_eq
.
rewrite
/
erase_tp
list_lookup_fmap
in
Hi1
.
destruct
(
t2''
!!
i
)
as
[
eio
|]
eqn
:
Heq
;
simplify_eq
/=.
edestruct
erased_prim_step_prim_step
as
(
eio'
&
σ3
&
κ'
&
efs'
&
ee
&
Heiopstp
&
Hprstps'
&
?
&
?
&
?);
first
done
;
last
simplify_eq
/=.
{
eapply
adequate_not_stuck
;
eauto
using
elem_of_list_lookup_2
.
}
eexists
_,
_,
_;
repeat
split
;
first
eapply
erased_steps_extend
;
eauto
.
rewrite
/
pure_step_tp
/
erase_tp
fmap_app
.
apply
Forall2_app
;
last
done
.
apply
Forall2_same_length_lookup
;
split
.
{
apply
Forall2_length
in
Hprstps
;
rewrite
fmap_length
in
Hprstps
.
by
rewrite
fmap_length
insert_length
-
Hlen
.
}
intros
j
x
y
.
destruct
(
decide
(
i
=
j
));
simplify_eq
.
{
rewrite
Hi3
list_lookup_fmap
list_lookup_insert
/=
;
last
by
eapply
lookup_lt_Some
.
by
intros
?
?;
simplify_eq
.
}
rewrite
list_lookup_fmap
list_lookup_insert_ne
//
-
list_lookup_fmap
.
intros
?
?
.
eapply
Forall2_lookup_lr
;
eauto
.
by
rewrite
Hlu
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment