Skip to content
Snippets Groups Projects
Verified Commit 31b7db5f authored by Rodolphe Lepigre's avatar Rodolphe Lepigre
Browse files

New conditional increment example.

parent 08108eb8
No related branches found
No related tags found
1 merge request!19Fix and conditional increment example
...@@ -91,6 +91,7 @@ theories/hocap/lib/oneshot.v ...@@ -91,6 +91,7 @@ theories/hocap/lib/oneshot.v
theories/hocap/concurrent_runners.v theories/hocap/concurrent_runners.v
theories/hocap/parfib.v theories/hocap/parfib.v
theories/logatom/cinc.v
theories/logatom/treiber.v theories/logatom/treiber.v
theories/logatom/treiber2.v theories/logatom/treiber2.v
theories/logatom/elimination_stack/hocap_spec.v theories/logatom/elimination_stack/hocap_spec.v
......
From iris.algebra Require Import excl auth agree frac list cmra.
From iris.base_logic.lib Require Export invariants.
From iris.program_logic Require Export atomic.
From iris.proofmode Require Import tactics.
From iris.heap_lang Require Import proofmode notation.
Import uPred bi List Decidable.
Set Default Proof Using "Type".
(** Using prophecy variables with helping: implementing conditional counter from
"Logical Relations for Fine-Grained Concurrency" by Turon et al. (POPL 2013) *)
(** * Implementation of the functions. *)
(*
new_counter() :=
let c = ref (injL 0) in
let f = ref false in
ref (f, c)
*)
Definition new_counter : val :=
λ: <>,
let: "c" := ref (ref (InjL #0)) in
let: "f" := ref #true in
("f", "c").
(*
set_flag(ctr, b) :=
ctr.1 <- b
*)
Definition set_flag : val :=
λ: "ctr" "b",
Fst "ctr" <- "b".
(*
complete(c, f, x, n, p) :=
Resolve CAS(c, x, ref (injL (if !f then n+1 else n))) p (ref ()) ;; ()
*)
Definition complete : val :=
λ: "c" "f" "x" "n" "p",
Resolve (CAS "c" "x" (ref (InjL (if: !"f" then "n" + #1 else "n")))) "p" (ref #()) ;; #().
(*
get(c, f) :=
let x = !c in
match !x with
| injL n => n
| injR (n, p) => complete c f x n p; get(c, f)
*)
Definition get : val :=
rec: "get" "ctr" :=
let: "f" := Fst "ctr" in
let: "c" := Snd "ctr" in
let: "x" := !"c" in
match: !"x" with
InjL "n" => "n"
| InjR "args" =>
complete "c" "f" "x" (Fst "args") (Snd "args") ;;
"get" "ctr"
end.
(*
cinc(c, f) :=
let x = !c in
match !x with
| injL n =>
let p := new proph in
let y := ref (injR (n, p)) in
if CAS(c, x, y) then complete(c, f, y, n, p)
else cinc(c, f)
| injR (n, p) =>
complete(c, f, x, n, p);
cinc(c, f)
*)
Definition cinc : val :=
rec: "cinc" "ctr" :=
let: "f" := Fst "ctr" in
let: "c" := Snd "ctr" in
let: "x" := !"c" in
match: !"x" with
InjL "n" =>
let: "p" := NewProph in
let: "y" := ref (InjR ("n", "p")) in
if: CAS "c" "x" "y" then complete "c" "f" "y" "n" "p" ;; Skip
else "cinc" "ctr"
| InjR "args'" =>
complete "c" "f" "x" (Fst "args'") (Snd "args'") ;;
"cinc" "ctr"
end.
(** ** Proof setup *)
(** To represent histories of allocated locations, we need some helper lemmas
about suffixes on lists. *)
Section suffixes.
Lemma suffix_trans (h1 h2 h3 : list loc) :
h1 `suffix_of` h2
h2 `suffix_of` h3
h1 `suffix_of` h3.
Proof.
intros [? ->] [? ->]. rewrite app_assoc. by eexists.
Qed.
Lemma suffix_eq (h1 h2 : list loc) :
h1 `suffix_of` h2
h2 `suffix_of` h1
h1 = h2.
Proof.
intros [xs ->] [ys Heq]. rewrite <- app_nil_l in Heq at 1. rewrite app_assoc in Heq.
apply app_inv_tail, eq_sym in Heq. by apply app_eq_nil in Heq as [_ ->].
Qed.
Lemma suffix_in (h1 h2 : list loc) l :
h1 `suffix_of` h2
In l h1
In l h2.
Proof.
destruct h1 as [|y ys]; first done.
intros Hs Hin. destruct Hs as [l2' ->]. apply in_or_app. by right.
Qed.
Lemma suffix_in_head (h1 h2 : list loc) l :
h1 `suffix_of` h2
Some l = head h1
In l h2.
Proof.
destruct h1 as [|y ys]; first done.
intros Hs [=->]. eapply suffix_in; first done. apply in_eq.
Qed.
(** A helper lemma that will come up in the proof of [complete] *)
Lemma nodup_suffix_contradiction (l1 l2 l3 : loc) (H1 H2 H3 : list loc) :
Some l1 = hd_error H1
Some l2 = hd_error H2
Some l3 = hd_error H3
In l3 H1
H1 `suffix_of` H2
H2 `suffix_of` H3
l2 l3
NoDup H3
False.
Proof.
intros Heq Heq' Heq'' Hin Hs Hs' Hn Hd.
destruct Hs' as [xs ->]. destruct Hs as [ys ->]. destruct (in_split _ _ Hin) as (x & y & ->).
do 2 rewrite app_assoc in Hd. apply NoDup_remove_2 in Hd.
(* xs, ys, and x must be empty *)
destruct xs as [|x' xs]; last first.
{ simpl in *. inversion Heq''. subst.
contradict Hd. by left. }
destruct ys as [|y' ys]; last first.
{ simpl in *. inversion Heq''; subst.
contradict Hd. by left. }
destruct x as [|z' zs]; last first.
{ simpl in *. inversion Heq''; subst.
contradict Hd. by left. }
simpl in *. inversion Heq'; done.
Qed.
End suffixes.
(** Resource algebra for histories *)
Section histories.
Inductive hist :=
| histv (h : list loc) : hist
| histbot : hist.
Inductive hist_equiv : Equiv hist :=
| Hist_equiv h1 h2 : h1 = h2 h1 h2.
Existing Instance hist_equiv.
Instance hist_equiv_Equivalence : @Equivalence hist equiv.
Proof.
split.
- move => [|]; by constructor.
- move => [?|] []; inversion 1; subst; by constructor.
- move => [?|] [] [];
inversion 1; inversion 1; subst; by constructor.
Qed.
Canonical Structure histC : ofeT := discreteC hist.
Instance hist_valid : Valid hist :=
λ x, match x with histv _ => True | histbot => False end.
Instance hist_op : Op hist := λ h1 h2,
match h1, h2 with
| histv h1', histv h2' =>
if decide (h1' `suffix_of` h2')
then h2
else if decide (h2' `suffix_of` h1')
then h1
else histbot
| _, _ =>
histbot
end.
Arguments op _ _ !_ !_ /.
Instance hist_PCore : PCore hist := Some.
Global Instance hist_op_comm: Comm equiv hist_op.
Proof.
intros [h1|] [h2|]; auto. simpl.
case_decide as H1; [case_decide as H2|auto]; last auto.
constructor. destruct H1. subst. destruct H2.
rewrite <- app_nil_l in H at 1. rewrite app_assoc in H.
by apply app_inv_tail, eq_sym, app_eq_nil in H as [-> ->].
Qed.
Global Instance hist_op_idemp : IdemP eq hist_op.
Proof. intros [|]; [by simpl; rewrite decide_True|auto]. Qed.
Lemma hist_op_l h1 h2 (Le: h1 `suffix_of` h2) :
histv h1 histv h2 = histv h2.
Proof. simpl. case_decide; done. Qed.
Lemma hist_op_r h1 h2 (Le: h1 `suffix_of` h2) :
histv h2 histv h1 = histv h2.
Proof.
simpl. case_decide.
- f_equal. by apply suffix_eq.
- by case_decide.
Qed.
Global Instance hist_op_assoc: Assoc equiv (op: Op hist).
Proof.
intros [h1|] [h2|] [h3|]; eauto; simpl.
- repeat (case_decide; auto).
+ rewrite !hist_op_l; auto. etrans; eauto.
+ simpl. repeat case_decide; last done.
* destruct H as [xs ->]. destruct H2 as [ys [[k [->->]] | [k [->->]]]%app_eq_inv].
** contradict H1. by apply suffix_app_r.
** contradict H0. by apply suffix_app_r.
* contradict H1. by etrans.
+ rewrite hist_op_l; [by rewrite hist_op_r|auto].
+ rewrite !hist_op_r; auto. by etrans.
+ simpl. rewrite !decide_False; auto.
+ simpl. rewrite !decide_False; auto.
+ simpl. case_decide.
* exfalso. apply H. by etrans.
* case_decide; last done. exfalso.
destruct H4 as [xs ->]. destruct H2 as [ys [[k [->->]] | [k [->->]]]%app_eq_inv].
** contradict H0. by apply suffix_app_r.
** contradict H. by apply suffix_app_r.
- simpl. repeat case_decide; auto.
Qed.
Lemma hist_included h1 h2 :
histv h1 histv h2 h1 `suffix_of` h2.
Proof.
split.
- move => [[?|]]; simpl; last by inversion 1.
case_decide.
* inversion 1. naive_solver.
* case_decide; inversion 1; naive_solver.
- intros. exists (histv h2). by rewrite hist_op_l.
Qed.
Lemma hist_valid_op h1 h2 :
(histv h1 histv h2) h1 `suffix_of` h2 h2 `suffix_of` h1.
Proof. simpl. case_decide; first by left. case_decide; [by right|done]. Qed.
Lemma hist_core_self (X: hist) : core X = X.
Proof. done. Qed.
Instance hist_unit : Unit hist := histv nil.
Definition hist_ra_mixin : RAMixin hist.
Proof.
apply ra_total_mixin; eauto.
- intros [?|] [?|] [?|]; auto; inversion 1; naive_solver.
- by destruct 1; constructor.
- destruct 1. naive_solver.
- apply hist_op_assoc.
- apply hist_op_comm.
- intros ?. by rewrite hist_core_self idemp_L.
- intros [|] [|]; simpl; done.
Qed.
Canonical Structure histR := discreteR hist hist_ra_mixin.
Global Instance hist_cmra_discrete : CmraDiscrete histR.
Proof. apply discrete_cmra_discrete. Qed.
Global Instance hist_core (h: hist) : CoreId h.
Proof.
rewrite /CoreId. reflexivity.
Qed.
Definition hist_ucmra_mixin : UcmraMixin hist.
Proof.
split; [done| |auto]. intros [|]; [simpl|done]. done.
Qed.
Lemma hist_local_update h1 X h2 :
h1 `suffix_of` h2 (histv h1, X) ~l~> (histv h2, histv h2).
Proof.
intros Le. rewrite local_update_discrete.
move => [[h3|]|] /= ? Eq; split => //; last first; move : Eq.
- destruct X; by inversion 1.
- destruct X; rewrite /cmra_op /= => Eq;
repeat case_decide; auto; inversion Eq; subst; try naive_solver.
+ constructor. inversion H1. subst. f_equal. by apply suffix_eq.
+ constructor. inversion H2. subst. f_equal. apply suffix_eq; by etrans.
+ inversion H3; subst. by apply (suffix_trans _ _ _ H0) in Le.
Qed.
Canonical Structure histUR := UcmraT hist hist_ucmra_mixin.
End histories.
Definition histListUR := optionUR $ prodR fracR $ agreeR $ listC locC.
Definition historyUR := prodUR (authUR histListUR) (authUR histUR).
Definition flagUR := authR $ optionUR $ exclR boolC.
Definition numUR := authR $ optionUR $ exclR ZC.
Definition tokenUR := authR $ optionUR $ exclR valC.
Class cincG Σ := ConditionalIncrementG {
cinc_historyG :> inG Σ historyUR;
cinc_flagG :> inG Σ flagUR;
cinc_numG :> inG Σ numUR;
cinc_tokenG :> inG Σ tokenUR;
}.
Definition cincΣ : gFunctors :=
#[GFunctor historyUR; GFunctor flagUR; GFunctor numUR; GFunctor tokenUR].
Instance subG_cincΣ {Σ} : subG cincΣ Σ cincG Σ.
Proof. solve_inG. Qed.
Section conditional_counter.
Context {Σ} `{!heapG Σ, !cincG Σ}.
Context (N : namespace).
Local Definition stateN := N .@ "state".
Local Definition counterN := N .@ "counter".
Definition token : tokenUR :=
Excl' #().
Definition histList (H : list loc) (q : Qp) : histListUR :=
Some (q, to_agree H).
Definition half_history_frag (H : list loc) : historyUR :=
( (histList H (1/2)%Qp), (histv H)).
Definition full_history_frag (H : list loc) : historyUR :=
( (histList H 1%Qp), (histv H)).
Definition full_history_auth (H : list loc) : historyUR :=
( (histList H 1%Qp), (histv H)).
Definition hist_snapshot H : historyUR :=
( None, histv H).
Global Instance snapshot_persistent H γ_h : Persistent (own γ_h (hist_snapshot H)).
Proof.
apply own_core_persistent. rewrite /CoreId. done.
Qed.
(** Updating and synchronizing history RAs *)
Lemma sync_histories H1 H2 γ_h :
own γ_h (half_history_frag H1) -∗ own γ_h (half_history_frag H2) -∗ H1 = H2⌝.
Proof.
iIntros "H1 H2". iCombine "H1" "H2" as "H". iPoseProof (own_valid with "H") as "H".
iDestruct "H" as %H. iPureIntro. destruct H as [[_ Hl1%agree_op_inv] _].
by apply to_agree_inj, leibniz_equiv in Hl1.
Qed.
Lemma add_half_histories (H : list loc) γ_h :
own γ_h (half_history_frag H) -∗
own γ_h (half_history_frag H) -∗
own γ_h (full_history_frag H).
Proof.
iIntros "H1 H2". iCombine "H1" "H2" as "H". done.
Qed.
Lemma update_history H H' l γ_h :
own γ_h (full_history_auth H) -∗
own γ_h (half_history_frag H) -∗
own γ_h (half_history_frag H') ==∗
own γ_h (full_history_auth (l :: H))
own γ_h (half_history_frag (l :: H))
own γ_h (half_history_frag (l :: H)).
Proof.
iIntros "H● H1◯ H2◯". iDestruct (sync_histories with "H1◯ H2◯") as %<-.
iDestruct (add_half_histories with "H1◯ H2◯") as "H◯".
iCombine "H● H◯" as "H". rewrite -own_op -own_op.
iApply (own_update with "H"). apply prod_update.
- apply auth_update, option_local_update. rewrite pair_op frac_op' agree_idemp.
rewrite Qp_div_2. apply exclusive_local_update. by constructor.
- apply auth_update. simpl. rewrite hist_op_l; last done.
by apply hist_local_update, suffix_cons_r.
Qed.
Lemma sync_snapshot H1 H2 H2' γ_h :
own γ_h (full_history_auth H1) -∗ own γ_h ( H2', histv H2) -∗ H2 `suffix_of` H1⌝.
Proof.
iIntros "H● H◯". iCombine "H●" "H◯" as "H".
by iDestruct (own_valid with "H") as %[_ [Hs%hist_included _]%auth_both_valid].
Qed.
Lemma extract_snapshot H γ_h :
own γ_h (half_history_frag H) -∗ own γ_h (hist_snapshot H).
Proof.
iIntros "H".
iAssert (own γ_h (half_history_frag H) own γ_h (hist_snapshot H))%I with "[H]" as "[_ H2]".
{ rewrite -own_op pair_op.
assert ( histList H (1 / 2) None = (histList H (1 / 2) None)) as Heq by apply auth_frag_op.
assert ( histv H histv H = (histv H histv H)) as Heq' by apply auth_frag_op.
rewrite Heq Heq' right_id. rewrite <- core_id_dup; first done. by rewrite /CoreId. }
rewrite intuitionistically_into_persistently.
by iApply persistent.
Qed.
Lemma sync_counter_values γ_n (n m : Z) :
own γ_n ( Excl' n) -∗ own γ_n ( Excl' m) -∗ n = m⌝.
Proof.
iIntros "H● H◯". iCombine "H●" "H◯" as "H". iDestruct (own_valid with "H") as "H".
by iDestruct "H" as %[H%Excl_included%leibniz_equiv _]%auth_both_valid.
Qed.
(** Updating and synchronizing the counter and flag RAs *)
Lemma sync_flag_values γ_n (b1 b2 : bool) :
own γ_n ( Excl' b1) -∗ own γ_n ( Excl' b2) -∗ b1 = b2⌝.
Proof.
iIntros "H● H◯". iCombine "H●" "H◯" as "H". iDestruct (own_valid with "H") as "H".
by iDestruct "H" as %[H%Excl_included%leibniz_equiv _]%auth_both_valid.
Qed.
Lemma update_counter_value γ_n (n1 n2 m : Z) :
own γ_n ( Excl' n1) -∗ own γ_n ( Excl' n2) ==∗ own γ_n ( Excl' m) own γ_n ( Excl' m).
Proof.
iIntros "H● H◯". iCombine "H●" "H◯" as "H". rewrite -own_op. iApply (own_update with "H").
by apply auth_update, option_local_update, exclusive_local_update.
Qed.
Lemma update_flag_value γ_n (b1 b2 b : bool) :
own γ_n ( Excl' b1) -∗ own γ_n ( Excl' b2) ==∗ own γ_n ( Excl' b) own γ_n ( Excl' b).
Proof.
iIntros "H● H◯". iCombine "H●" "H◯" as "H". rewrite -own_op. iApply (own_update with "H").
by apply auth_update, option_local_update, exclusive_local_update.
Qed.
Definition counter_content (γs : gname * gname * gname) (c : bool * Z) :=
(own γs.1.2 ( Excl' c.1) own γs.2 ( Excl' c.2))%I.
(** Definition of the invariant *)
Fixpoint val_to_some_loc (vs : list (val * val)) : option loc :=
match vs with
| (#true , LitV (LitLoc l)) :: _ => Some l
| _ :: vs => val_to_some_loc vs
| _ => None
end.
Lemma val_to_some_loc_some vs l :
val_to_some_loc vs = Some l
v1 v2 vs', vs = (v1, v2) :: vs'
( (v1 = #true v2 = LitV (LitLoc l))
val_to_some_loc vs' = Some l).
Proof.
intros H. destruct vs as [|[v1 v2] vs']; first done.
exists v1, v2, vs'. split; first done.
destruct v1; try by right. destruct l0; try by right.
destruct b; try by right. destruct v2; try by right.
destruct l0; try by right. simpl in H. inversion H. by left.
Qed.
Inductive abstract_state : Set :=
| injl : Z abstract_state
| injr : Z proph_id abstract_state.
Definition own_token γ_t := (own γ_t token)%I.
Definition used_up l γ_h :=
( H, own γ_h (hist_snapshot H) In l H Some l head H)%I.
Definition not_done_state H l (γ_h : gname) :=
(own γ_h (half_history_frag H) Some l = head H)%I.
Definition pending_state P (n : Z) vs l_ghost (γ_h γ_n : gname) :=
(P match val_to_some_loc vs with None => True | Some l => l = l_ghost end own γ_n ( Excl' n))%I.
Definition accepted_state Q vs (l l_ghost : loc) (γ_h : gname) :=
(l_ghost {1/2} - match val_to_some_loc vs with None => True | Some l => l = l_ghost Q end)%I.
Definition done_state Q (l l_ghost : loc) (γ_t γ_h : gname) :=
((Q own_token γ_t) l_ghost - used_up l γ_h)%I.
Definition state_inv P Q (p : proph_id) n l l_ghost H γ_h γ_n γ_t : iProp Σ :=
( vs, proph p vs
((not_done_state H l γ_h
( pending_state P n vs l_ghost γ_h γ_n
accepted_state Q vs l l_ghost γ_h ))
done_state Q l l_ghost γ_t γ_h))%I.
Definition pau P Q γs :=
( P -∗ AU << (b : bool) (n : Z), counter_content γs (b, n) >> @ ⊤∖↑N,
<< counter_content γs (b, (if b then n + 1 else n)), COMM Q >>)%I.
Definition counter_inv γ_h γ_b γ_n f c :=
( (b : bool) (l : loc) (H : list loc) (q : Qp) (v : val),
f #b c #l l {q} v
own γ_h (full_history_auth H)
own γ_h (half_history_frag H)
([ list] l H, q, l {q} -)
Some l = head H NoDup H
own γ_b ( Excl' b)
(( (n : Z), v = InjLV #n own γ_h (half_history_frag H) own γ_n ( Excl' n))
( (n : Z) (p : proph_id), v = InjRV(#n,#p)
P Q l_ghost γ_t, inv stateN (state_inv P Q p n l l_ghost H γ_h γ_n γ_t)
pau P Q (γ_h, γ_b, γ_n))))%I.
Definition is_counter (γs : gname * gname * gname) (ctr : val) :=
( (γ_h γ_b γ_n : gname) (f c : loc),
γs = (γ_h, γ_b, γ_n) ctr = (#f, #c)%V
inv counterN (counter_inv γ_h γ_b γ_n f c))%I.
Global Instance is_counter_persistent γs ctr : Persistent (is_counter γs ctr) := _.
Global Instance counter_content_timeless γs ctr : Timeless (counter_content γs ctr) := _.
Global Instance abstract_state_inhabited: Inhabited abstract_state := populate (injl 0).
(** A few more helper lemmas that will come up later *)
Lemma mapsto_valid_3 l v1 v2 q :
l v1 -∗ l {q} v2 -∗ False⌝.
Proof.
iIntros "Hl1 Hl2". iDestruct (mapsto_valid_2 with "Hl1 Hl2") as %Hv.
apply (iffLR (frac_valid' _)) in Hv. by apply Qp_not_plus_q_ge_1 in Hv.
Qed.
Instance in_dec (l : loc) H: Decision (In l H).
Proof.
induction H as [|a H IH].
- right. naive_solver.
- destruct (decide (l = a)).
+ left. naive_solver.
+ destruct IH; [ left | right]; naive_solver.
Qed.
Lemma nodup_fresh_loc l v H:
NoDup H l v -∗ ([ list] l H, q, l {q} -) -∗ NoDup (l :: H)⌝.
Proof.
intros Hd. iIntros "Hl Hls".
destruct (decide (In l H)) as [(x1 & x2 & ->)%in_split | Hn%NoDup_cons]; last done.
- destruct x1 as [|x1 x1s];
[ rewrite app_nil_l in Hd; rewrite app_nil_l; iDestruct "Hls" as "[Hl' _]" |
iDestruct "Hls" as "[_ [Hl' _]]" ];
iDestruct "Hl'" as (q v') "Hl'";
by iDestruct (mapsto_valid_3 with "Hl Hl'") as %?.
- by iPureIntro.
Qed.
(** ** Proof of [complete] *)
(** The part of [complete] for the succeeding thread that moves from [pending] to [accepted] state *)
Lemma complete_succeeding_thread_pending γ_h γ_b γ_n γ_t f_l c_l P Q p (m n : Z) l l_ghost l_new H Φ :
Some l = head H
inv counterN (counter_inv γ_h γ_b γ_n f_l c_l) -∗
inv stateN (state_inv P Q p m l l_ghost H γ_h γ_n γ_t) -∗
pau P Q (γ_h, γ_b, γ_n) -∗
l_ghost {1 / 2} #() -∗
((own_token γ_t ={}=∗ Q) -∗ Φ #()) -∗
own γ_n ( Excl' n) -∗
l_new InjLV #n -∗
WP Resolve (CAS #c_l #l #l_new) #p #l_ghost ;; #() {{ v, Φ v }}.
Proof.
iIntros (Heq) "#InvC #InvS PAU Hl_ghost HQ Hn● Hl_new". wp_bind (Resolve _ _ _)%E.
iInv counterN as (b' l' H' q v) "[>Hf [>Hc [>Hl' [>H● [>H◯ [>HlH [>Heq [Hb● Hrest]]]]]]]]".
iDestruct "Heq" as %[Heq'' Hd']. simpl.
iDestruct ((nodup_fresh_loc _ _ _ Hd') with "Hl_new HlH") as %Hd''.
(* It must be that l' = l because we are in the succeeding thread. *)
destruct (decide (l' = l)) as [->|HNeq]; last first. {
iInv stateN as (vs') "[>Hp' [[>[Hh◯ _] State] | Done]]".
- iDestruct "State" as "[Pending | Accepted]".
+ iDestruct "Pending" as "[_ >[_ Hn●']]".
iCombine "Hn●'" "Hn●" as "Contra".
iDestruct (own_valid with "Contra") as %Contra. by inversion Contra.
+ iDestruct (sync_histories with "Hh◯ H◯") as %->.
rewrite <- Heq'' in Heq. by inversion Heq.
- iDestruct "Done" as "[_ >[Hlghost _]]".
wp_apply (wp_resolve with "Hp'"); first done. wp_cas_fail.
iDestruct "Hlghost" as (?) "Hlghost".
by iDestruct (mapsto_valid_2 with "Hlghost Hl_ghost") as %?.
}
(* To apply the CAS, we need the prophecy variable, so we open the state invariant. *)
iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq'] State] | Done]]".
- iDestruct "State" as "[Pending | Accepted]".
+ (* Pending: contradiction. *)
iDestruct "Pending" as "[_ >[_ Hn●']]".
iCombine "Hn●" "Hn●'" as "Contra".
iDestruct (own_valid with "Contra") as %Contra. by inversion Contra.
+ (* We perform the CAS. *)
iDestruct (sync_histories with "H◯ Hh◯") as %->.
wp_apply (wp_resolve with "Hp'"); first done; wp_cas_suc.
destruct (val_to_some_loc vs') eqn:Hvtsl; last first. {
(* Wrong prophecy: contradiction. *)
iIntros (vs ->). inversion Hvtsl.
}
(* Update to Done. *)
iDestruct "Accepted" as "[Hl_ghost_inv H]".
rewrite Hvtsl. iDestruct "H" as "[HEq Q]".
(* The first element of H is l. *)
destruct H as [|l' H]; inversion Heq; subst l'.
(* And we have l ≠ l_new. *)
destruct (decide (l = l_new)) as [->|HNeq]. {
iDestruct "HlH" as "[Hl HlH]". iDestruct "Hl" as (q' v') "Hl".
by iDestruct (mapsto_valid_3 with "Hl_new Hl") as %Contra.
}
(* Update histories. *)
iDestruct (update_history _ _ l_new with "H● H◯ Hh◯") as ">[Hh● [H◯ H◯']]".
iIntros (pv' ->) "Hp". iModIntro.
(* Extract snapshot to prove used_up. *)
iDestruct (extract_snapshot with "H◯'") as "#Hs".
iSplitL "Hl_ghost_inv Hl_ghost Q Hp".
(* Update state to Done. *)
{ iNext. iExists _. iSplitL "Hp"; first done. repeat iRight.
iDestruct "Hl_ghost_inv" as (v'') "Hl_ghost''".
iDestruct (mapsto_agree with "Hl_ghost Hl_ghost''") as %<-.
iCombine "Hl_ghost" "Hl_ghost''" as "Hl_ghost'".
iSplitL "Q"; first by iFrame. iSplitL "Hl_ghost'"; first by eauto.
iExists (l_new :: l :: H). iSplit; first done. iPureIntro.
split; first by apply in_cons, in_eq. by intros [=->]. }
iModIntro. iSplitR "HQ".
{ iNext. iExists _, _, _, _, _. iSplitL "Hf"; first done.
iSplitL "Hc"; first done. iDestruct "Hl_new" as "[$ Hl_new]".
iSplitL "Hh●"; first done. iSplitL "H◯'"; first done.
iSplitL "HlH Hl_new". { iSplitL "Hl_new"; first by iExists _, _. iFrame. }
iSplit; first done. iSplitL "Hb●"; first done. iLeft. iExists n. by iFrame. }
iApply wp_fupd. wp_seq. iApply "HQ". iModIntro. iIntros "Ht".
iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq'] _] | Done]]".
* iInv counterN as (b5 l5 H5 q5 v5) "[>Hf [>Hc [>Hl [>H● [>H◯ _]]]]]".
iDestruct (sync_histories with "H◯ Hh◯") as %->.
by iDestruct (sync_snapshot with "H● Hs") as %?%suffix_cons_not.
* iDestruct "Done" as "[QT [>Hlghost Usedup]]".
iModIntro. iDestruct (later_intro with "Ht") as "Ht".
iDestruct (later_or with "QT") as "[Q | T]"; last first.
{ iCombine "Ht" "T" as "Contra". iDestruct (own_valid with "Contra") as "#Contra'".
iSplitL; try iModIntro; try iNext; iDestruct "Contra'" as %Contra;
by inversion Contra. }
iSplitR "Q"; last done. iNext. iExists _. iSplitL "Hp'"; first done.
repeat iRight. iFrame.
- (* Done: contradiction. *)
iDestruct "Done" as "[QT [>Hlghost Usedup]]".
iDestruct "Hlghost" as (v') "Hlghost".
by iDestruct (mapsto_valid_2 with "Hl_ghost Hlghost") as %?.
Qed.
(** The part of [complete] for the failing thread *)
Lemma complete_failing_thread γ_h γ_b γ_n γ_t f_l c_l l1 l H1 H P Q p m n l_ghost_inv l_ghost l_new Φ :
Some l1 = head H1
In l H1
l_ghost_inv l_ghost
inv counterN (counter_inv γ_h γ_b γ_n f_l c_l) -∗
inv stateN (state_inv P Q p m l l_ghost_inv H γ_h γ_n γ_t) -∗
pau P Q (γ_h, γ_b, γ_n) -∗
own γ_h (hist_snapshot H1) -∗
((own_token γ_t ={}=∗ Q) -∗ Φ #()) -∗
l_new InjLV #n -∗
WP Resolve (CAS #c_l #l #l_new) #p #l_ghost ;; #() {{ v, Φ v }}.
Proof.
iIntros (Heq Hin Hnl) "#InvC #InvS PAU #Hs1 HQ Hl_new". wp_bind (Resolve _ _ _)%E.
iInv counterN as (b l' H' q v) "[>Hf [>Hc [>Hl [>H● [>H◯ [HlH [>Heq [Hb● Hrest]]]]]]]]".
iDestruct (extract_snapshot with "H◯") as "#Hs2".
iDestruct (sync_snapshot with "H● Hs1") as %H12.
(* It must be that l' = l because we are in the succeeding thread. *)
destruct (decide (l' = l)) as [->|Hn]. {
iInv stateN as (vs') "[>Hp' [[>[Hh◯ _] State] | Done]]".
- wp_apply (wp_resolve with "Hp'"); first done; wp_cas_suc. iIntros (vs ->).
iDestruct "State" as "[Pending | Accepted]".
+ iDestruct "Pending" as "[_ [Hvs _]]". iDestruct "Hvs" as %Hvs. by inversion Hvs.
+ iDestruct "Accepted" as "[_ [Hvs _]]". iDestruct "Hvs" as %Hvs. by inversion Hvs.
- iDestruct "Done" as "[QT [>Hlghost Usedup]]".
iDestruct "Usedup" as (H'') "[Hs >Usedup]".
iDestruct "Usedup" as %[Hin' Hn].
iDestruct "Heq" as %[Heq' Hd'].
iMod (intuitionistically_elim with "Hs") as "Hs".
iDestruct (sync_snapshot with "H● Hs") as %Hs'.
destruct Hs' as [xs ->]. destruct (in_split _ _ Hin) as (x & y & ->).
destruct xs as [|z zs]; first done.
simpl in *. inversion Heq'; subst. destruct (in_split _ _ Hin') as (x1 & x2 & ->).
rewrite app_comm_cons in Hd'. rewrite app_assoc in Hd'.
apply (NoDup_remove _ _ _) in Hd' as [_ Contra].
rewrite <- app_comm_cons in Contra. simpl in *. exfalso. eauto.
}
(* The CAS fails. *)
iInv stateN as (vs') "[>Hp' State]".
wp_apply (wp_resolve with "Hp'"); first done. wp_cas_fail.
iDestruct (extract_snapshot with "H◯") as "#Hs".
iIntros (vs ->) "Hp". iModIntro. iDestruct "Heq" as %[Heq' Hd'].
iSplitL "State Hp". { iNext. iExists vs. iFrame. } iModIntro.
iSplitL "Hf Hc Hl H● H◯ HlH Hb● Hrest". { iNext. iExists _, _, _, _. eauto with iFrame. }
wp_seq. iApply "HQ". iIntros "Ht".
iInv counterN as (b3 l3 H3 q3 v3) "[>Hf [>Hc [>Hl [>H● [>H◯ [HlH [>Heq [Hb● Hrest]]]]]]]]".
iDestruct "Heq" as %[Heq'' Hd''].
iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq'] _] | Done]]".
- iDestruct (sync_histories with "H◯ Hh◯") as %->.
iDestruct (sync_snapshot with "H● Hs") as %Hs.
iDestruct "Heq'" as %Heq'''. rewrite <- Heq'' in Heq'''.
inversion Heq'''. subst. exfalso.
by eapply (nodup_suffix_contradiction _ _ _ _ _ _ Heq Heq' Heq'').
- iDestruct "Done" as "[[Q | >T] Hrest']"; iModIntro.
+ iSplitL "Ht Hp' Hrest'".
{ iNext. iExists _. iSplitL "Hp'"; first done. repeat iRight. iFrame. }
iModIntro. iSplitR "Q"; last done. iNext. iExists _, _, _, _. eauto with iFrame.
+ iCombine "T" "Ht" as "Contra".
iDestruct (own_valid with "Contra") as %Contra. by inversion Contra.
Qed.
(** ** Proof of [complete] *)
Lemma complete_spec (c f l : loc) H (n : Z) (p : proph_id) γs γ_t l_ghost_inv P Q :
is_counter γs (#f, #c) -∗
inv stateN (state_inv P Q p n l l_ghost_inv H γs.1.1 γs.2 γ_t) -∗
pau P Q γs -∗
{{{ True }}}
complete #c #f #l #n #p
{{{ RET #(); own_token γ_t ={}=∗ Q }}}.
Proof.
iIntros "#InvC #InvS #PAU". destruct γs as [[γ_h γ_b] γ_n].
iDestruct "InvC" as (??? f_l c_l [[=<-<-<-][=->->]]) "#InvC".
iModIntro. iIntros (Φ) "_ HQ". wp_lam. wp_pures.
wp_alloc l_ghost as "[Hl_ghost' Hl_ghost'2]". wp_bind (! _)%E. simpl.
(* open outer invariant to read `f` *)
iInv counterN as (b1 l1 H1 q1 v1) "[>Hf [>Hc [>Hl [>H● [>H◯ [Hlh1 [>Heq [Hb● Hrest]]]]]]]]".
iDestruct "Heq" as %[Heq Hd]. wp_load.
(* two different proofs depending on whether we are succeeding thread *)
destruct (decide (l_ghost_inv = l_ghost)) as [-> | Hnl].
- (* we are the succeeding thread *)
(* we need to move from pending to accepted. *)
iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq] [Pending | Accepted]] | Done]]".
+ (* Pending: update to accepted *)
iDestruct "Pending" as "[P >[Hvs Hn●]]". iDestruct "Heq" as %Heq'.
iDestruct ("PAU" with "P") as ">AU".
(* open AU, sync flag and counter *)
iMod "AU" as (b2 n2) "[CC [_ Hclose]]".
iDestruct "CC" as "[Hb◯ Hn◯]". simpl.
iDestruct (sync_flag_values with "Hb● Hb◯") as %->.
iDestruct (sync_counter_values with "Hn● Hn◯") as %->.
iDestruct (sync_histories with "H◯ Hh◯") as %->.
rewrite <- Heq in Heq'. inversion_clear Heq'; subst.
iMod (update_counter_value _ _ _ (if b2 then n2 + 1 else n2) with "Hn● Hn◯")
as "[Hn● Hn◯]".
iMod ("Hclose" with "[Hn◯ Hb◯]") as "Q"; first by iFrame.
(* close state inv *)
iModIntro. iSplitL "Q H◯ Hl_ghost' Hp' Hvs".
{ iNext. iExists _. iSplitL "Hp'"; first done. iLeft.
iSplitL "H◯"; first by iFrame. iRight. iSplitL "Hl_ghost'"; first by iExists _.
destruct (val_to_some_loc vs') eqn:Hvts; iFrame. }
(* close outer inv *)
iModIntro. iSplitR "Hl_ghost'2 HQ Hn●".
{ iNext. iExists _, _, _, _, _. iFrame. done. }
destruct b2; wp_if; [ wp_op | .. ]; wp_alloc l_new as "Hl_new"; wp_pures;
iApply ((complete_succeeding_thread_pending _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Heq)
with "InvC InvS PAU Hl_ghost'2 HQ Hn● Hl_new").
+ (* Accepted: contradiction *)
iDestruct "Accepted" as "[>Hl_ghost_inv _]".
iDestruct "Hl_ghost_inv" as (v) "Hlghost".
iCombine "Hl_ghost'" "Hl_ghost'2" as "Hl_ghost'".
by iDestruct (mapsto_valid_2 with "Hlghost Hl_ghost'") as %?.
+ (* Done: contradiction *)
iDestruct "Done" as "[QT >[Hlghost _]]".
iDestruct "Hlghost" as (v) "Hlghost".
iCombine "Hl_ghost'" "Hl_ghost'2" as "Hl_ghost'".
by iDestruct (mapsto_valid_2 with "Hlghost Hl_ghost'") as %?.
- (* we are the failing thread *)
(* extract history and assert that it contains l *)
iDestruct (extract_snapshot with "H◯") as "#Hs1".
iAssert (|={ counterN}=> (In l H1 own γ_h (full_history_auth H1)))%I with "[H●]" as "Hin". {
iInv stateN as (vs') "[>Hp' [[>[Hh◯ Heq'] State] | Done]]".
- iDestruct (sync_snapshot with "H● Hh◯") as %Hs1. iDestruct "Heq'" as %Heq'.
iModIntro. iSplitR "H●".
{ iNext. iExists _. iSplitL "Hp'"; first done. iLeft. iFrame. done. }
iModIntro. iFrame. iPureIntro. by eapply suffix_in_head.
- iDestruct "Done" as "[QT [>Hlghost Usedup]]".
iDestruct "Usedup" as (H') "[Hs >Usedup]". iDestruct "Usedup" as %[Hin Hn].
iMod (intuitionistically_elim with "Hs") as "Hs".
iDestruct (sync_snapshot with "H● Hs") as %Hs'.
iModIntro. iSplitR "H●".
{ iNext. iExists _. iSplitL "Hp'"; first done. repeat iRight. iFrame.
iExists _. iSplit; last by iPureIntro. iDestruct "Hs" as "#Hs". iModIntro.
iApply "Hs". }
iModIntro. iSplit; last done.
iPureIntro. by eapply suffix_in.
}
(* close invariant *)
iMod "Hin" as (Hin) "H●". iModIntro.
iSplitL "Hf Hc H● H◯ Hb● Hrest Hl Hlh1". { iNext. iExists _, _, _, _. eauto with iFrame. }
(* two equal proofs depending on value of b1 *)
destruct b1; wp_if; [ wp_op | ..]; wp_alloc Hl_new as "Hl_new"; wp_pures;
iApply ((complete_failing_thread _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Heq Hin Hnl)
with "InvC InvS PAU Hs1 HQ Hl_new").
Qed.
(** ** Proof of [cinc] *)
Lemma cinc_spec c f γs :
is_counter γs (f, c) -∗
<<< (b : bool) (n : Z), counter_content γs (b, n) >>>
cinc (f, c)%V @⊤∖↑N
<<< counter_content γs (b, if b then n + 1 else n), RET #() >>>.
Proof.
iIntros "#InvC". iDestruct "InvC" as (γ_h γ_b γ_n f_l c_l) "[Heq InvC]".
iDestruct "Heq" as %[-> [=->->]]. iIntros (Φ) "AU". iLöb as "IH".
wp_lam. wp_proj. wp_let. wp_proj. wp_let. wp_bind (!_)%E.
iInv counterN as (b' l' H' q v) "[>Hf [>Hc [>[Hl Hl'] [>H● [>H◯ [Hlh [>Heq [>Hb● Hv]]]]]]]]".
wp_load. simpl. iDestruct "Hv" as "[Hv|Hv]".
- iDestruct "Hv" as (n) "[% Hv]"; subst v.
iModIntro. iSplitR "Hl' AU".
{ iModIntro. iExists _, _, _, (q/2)%Qp, (InjLV #n). eauto with iFrame. }
wp_let. wp_load. wp_match. wp_apply wp_new_proph; first done.
iIntros (l_ghost p') "Hp'".
wp_let. wp_alloc ly as "Hly". wp_let. wp_bind (CAS _ _ _)%E.
(* open outer invariant to read c_l *)
iInv counterN as (b l'' H'' q' v') "[>Hf [>Hc [>Hl'2 [>H● [>H◯ [>Hlh [>Heq [Hb● Hrest]]]]]]]]".
iDestruct "Heq" as %[Heq Hd].
(* assert that ly is not in the history *)
iDestruct (extract_snapshot with "H◯") as "#Hs".
iDestruct ((nodup_fresh_loc _ _ _ Hd) with "Hly Hlh") as %Hd'.
destruct (decide (l' = l'')) as [<- | Hn].
+ (* CAS succeeds *)
wp_cas_suc.
(* We need to update the half history with `ly`.
For that we will need to get the second half of the history *)
iDestruct "Hrest" as "[InjL | InjR]";
iPoseProof (mapsto_agree with "Hl' Hl'2") as "#Heq"; last first.
{ (* injR: contradiction *)
iDestruct "InjR" as (??) "[Heq' InjR_rest]".
iDestruct "Heq'" as %->. iDestruct "Heq" as %Heq'. inversion Heq'. }
(* injL: update history *)
iDestruct "InjL" as (n'') "[Heq' [H◯' Hn●]]".
iDestruct "Heq'" as %->. simpl. iDestruct "Heq" as %[=<-].
iPoseProof ((update_history _ _ ly) with "H● H◯ H◯'") as ">[H● [H◯' H◯'']]".
iDestruct (laterable with "AU") as (AU_later) "[AU #AU_back]".
iDestruct (own_alloc token) as ">Ht"; first by apply auth_auth_valid.
iDestruct "Ht" as (γ_t) "Token".
destruct (val_to_some_loc l_ghost) eqn:H.
* destruct (val_to_some_loc_some l_ghost l H) as [v1 [v2 [vs' [-> HCases]]]].
destruct HCases as [[-> ->] | Hl].
++ iMod (inv_alloc stateN _ (state_inv AU_later _ _ _ _ _ _ _ _ γ_t)
with "[AU H◯' Hp' Hn●]") as "#Hinv".
{ iNext. iExists _. iSplitL "Hp'"; first done. iLeft.
iSplitL "H◯'"; first by iFrame. iLeft. by iFrame. }
iModIntro. iDestruct "Hly" as "[Hly1 Hly2]". iSplitR "Hl' Token". {
(* close invariant *)
iNext. iExists _, ly, _, _, _. iFrame.
iSplitL "Hly1"; first by eauto. iSplit; first by iPureIntro.
iRight. iExists _, _. iSplit; first done. iExists _, _, _, _. iSplit; done.
}
wp_if.
wp_apply complete_spec; [iExists _, _, _, _, _; eauto | done | done | done | ..].
iIntros "Ht". iMod ("Ht" with "Token") as "Φ". wp_seq. by wp_lam.
++ iMod (inv_alloc stateN _ (state_inv AU_later _ _ _ ly l _ _ _ γ_t)
with "[AU H◯' Hp' Hn●]") as "#Hinv".
{ iNext. iExists _. iSplitL "Hp'"; first done. iLeft.
iSplitL "H◯'"; first by iFrame. iLeft. iFrame. by rewrite H. }
iModIntro. iDestruct "Hly" as "[Hly1 Hly2]". iSplitR "Hl' Token". {
(* close invariant *)
iNext. iExists _, ly, _, _, _. iFrame.
iSplitL "Hly1"; first by eauto. iSplit; first by iPureIntro.
iRight. iExists _, _. iSplit; first done. iExists _, _, _, _. iSplit; done.
}
wp_if.
wp_apply complete_spec; [iExists _, _, _, _, _; eauto | done | done | done | ..].
iIntros "Ht". iMod ("Ht" with "Token") as "Φ". wp_seq. by wp_lam.
* iMod (inv_alloc stateN _ (state_inv AU_later _ _ _ ly l' _ _ _ γ_t)
with "[AU H◯' Hp' Hn●]") as "#Hinv".
{ iNext. iExists _. iSplitL "Hp'"; first done. iLeft.
iSplitL "H◯'"; first by iFrame. iLeft. iFrame. by rewrite H. }
iModIntro. iDestruct "Hly" as "[Hly1 Hly2]". iSplitR "Hl' Token". {
(* close invariant *)
iNext. iExists _, ly, _, _, _. iFrame.
iSplitL "Hly1"; first by eauto. iSplit; first by iPureIntro.
iRight. iExists _, _. iSplit; first done. iExists _, _, _, _. iSplit; done.
}
wp_if.
wp_apply complete_spec; [iExists _, _, _, _, _; eauto | done | done | done | ..].
iIntros "Ht". iMod ("Ht" with "Token") as "Φ". wp_seq. by wp_lam.
+ (* CAS fails: closing invariant and invoking IH *)
wp_cas_fail.
iModIntro. iSplitR "Hl' AU".
iModIntro. iExists _, _, _, _. eauto 10 with iFrame.
wp_if. by iApply "IH".
- (* l' ↦ injR *)
iModIntro. iDestruct "Hv" as (n p) "[% Hrest]"; subst v.
(* extract state invariant *)
iDestruct "Hrest" as (P Q l_ghost γ_t) "[#InvS #P_AU]".
iSplitR "Hl' AU".
(* close invariant *)
{ iModIntro. iExists _, _, _, _, _. iFrame. iRight. eauto 10 with iFrame. }
wp_let. wp_load. wp_match. repeat wp_proj.
wp_apply complete_spec; [iExists _, _, _, _, _; eauto | done | done | done | ..].
iIntros "_". wp_seq. by iApply "IH".
Qed.
Lemma new_counter_spec :
{{{ True }}}
new_counter #()
{{{ ctr γs, RET ctr ; is_counter γs ctr counter_content γs (true, 0) }}}.
Proof.
iIntros (Φ) "_ HΦ". wp_lam. wp_apply wp_fupd.
wp_alloc l_n as "Hl_n". wp_alloc l_c as "Hl_c". wp_let.
wp_alloc l_f as "Hl_f". wp_let. wp_pair.
iMod (own_alloc (full_history_auth [l_n] full_history_frag [l_n])) as (γ_h) "[Hh● Hh◯]".
{ rewrite pair_op. apply pair_valid. split; by apply auth_both_valid. }
iMod (own_alloc ( Excl' true Excl' true)) as (γ_b) "[Hb● Hb◯]".
{ by apply auth_both_valid. }
iMod (own_alloc ( Excl' 0 Excl' 0)) as (γ_n) "[Hn● Hn◯]".
{ by apply auth_both_valid. }
iMod (inv_alloc counterN _ (counter_inv γ_h γ_b γ_n l_f l_c)
with "[Hl_f Hl_c Hl_n Hh● Hh◯ Hb● Hn●]") as "#InvC".
{ iNext. iDestruct "Hh◯" as "[Hh◯1 Hh◯2]". iDestruct "Hl_n" as "[Hl_n1 Hl_n2]".
iExists true, l_n, [l_n], _, (InjLV #0). iFrame.
iSplitL "Hl_n1". { simpl. iSplitL; last done. by iExists _, _. }
iSplitR. { iPureIntro. split; first done. apply NoDup_cons. apply in_nil. apply NoDup_nil. }
iLeft. iExists 0. iSplitR; first done. iFrame. }
iModIntro.
iApply ("HΦ" $! (#l_f, #l_c)%V (γ_h, γ_b, γ_n)).
iSplitR; last by iFrame. iExists γ_h, γ_b, γ_n, l_f, l_c. iSplit; done.
Qed.
Lemma set_flag_spec γs f c (new_b : bool) :
is_counter γs (f, c) -∗
<<< (b : bool) (n : Z), counter_content γs (b, n) >>>
set_flag (f, c)%V #new_b @⊤∖↑N
<<< counter_content γs (new_b, n), RET #() >>>.
Proof.
iIntros "#InvC" (Φ) "AU". wp_lam. wp_let. wp_proj.
iDestruct "InvC" as (γ_h γ_b γ_n l_f l_c) "[[HEq1 HEq2] InvC]".
iDestruct "HEq1" as %->. iDestruct "HEq2" as %HEq. inversion HEq; subst; clear HEq.
iInv counterN as (b c H q v) "[>Hl_f [>Hl_c [>Hl [>H● [>H◯ [>HlH [>HEq [Hb● H]]]]]]]]".
iMod "AU" as (b' n') "[[Hb◯ Hn◯] [_ Hclose]]"; simpl.
wp_store.
iDestruct (sync_flag_values with "Hb● Hb◯") as %HEq; subst b.
iDestruct (update_flag_value with "Hb● Hb◯") as ">[Hb● Hb◯]".
iMod ("Hclose" with "[Hn◯ Hb◯]") as "HΦ"; first by iFrame.
iModIntro. iModIntro. iSplitR "HΦ"; last done.
iNext. iExists new_b, c, H, q, v. iFrame.
Qed.
Lemma get_spec γs f c :
is_counter γs (f, c) -∗
<<< (b : bool) (n : Z), counter_content γs (b, n) >>>
get (f, c)%V @⊤∖↑N
<<< counter_content γs (b, n), RET #n >>>.
Proof.
iIntros "#InvC" (Φ) "AU". iLöb as "IH". wp_lam. repeat (wp_proj; wp_let). wp_bind (! _)%E.
iDestruct "InvC" as (γ_h γ_b γ_n l_f l_c) "[[HEq1 HEq2] InvC]".
iDestruct "HEq1" as %->. iDestruct "HEq2" as %HEq. inversion HEq; subst.
iInv counterN as (b c H q v) "[>Hl_f [>Hl_c [>[Hc Hc'] [>H● [>H◯ [>HlH [>HEq [Hb● [H|H]]]]]]]]]".
- wp_load. iDestruct "H" as (n) "[% [H◯2 Hn●]]". simpl in *; subst v.
iMod "AU" as (au_b au_n) "[[Hb◯ Hn◯] [_ Hclose]]"; simpl.
iDestruct (sync_counter_values with "Hn● Hn◯") as %->.
iMod ("Hclose" with "[Hn◯ Hb◯]") as "HΦ"; first by iFrame.
iModIntro. iSplitR "HΦ Hc'". {
iNext. iExists b, c, H, (q/2)%Qp, (InjLV #au_n). iFrame.
iLeft. iExists au_n. iFrame. done.
}
wp_let. wp_load. wp_match. iApply "HΦ".
- wp_load. iDestruct "H" as (n p) "[% H]". simpl in *; subst v.
iDestruct "H" as (P Q l_ghost γ_t) "[#InvS #PAU]".
iModIntro. iSplitR "AU Hc'". {
iNext. iExists b, c, H, (q/2)%Qp, (InjRV(#n,#p)). iFrame.
iRight. iExists n, p. iSplit; first done. iExists P, Q, l_ghost, γ_t. eauto.
}
wp_let. wp_load. wp_match. repeat wp_proj. wp_bind (complete _ _ _ _ _)%E.
wp_apply complete_spec; [ iExists _, _, _, _, _; eauto | done | done | done | .. ].
iIntros "Ht". wp_seq. iApply "IH". iApply "AU".
Qed.
End conditional_counter.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment