Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
Actris
Commits
fd433c0e
Commit
fd433c0e
authored
1 year ago
by
Jonas Kastberg
Browse files
Options
Downloads
Patches
Plain Diff
Refactoring of examples
parent
16764081
No related branches found
No related tags found
1 merge request
!39
Multiparty synchronous
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
multi_actris/examples/basics.v
+71
-101
71 additions, 101 deletions
multi_actris/examples/basics.v
with
71 additions
and
101 deletions
multi_actris/
channel/proto_consistency_
examples.v
→
multi_actris/example
s/basic
s.v
+
71
−
101
View file @
fd433c0e
...
...
@@ -7,13 +7,13 @@ Lemma iProto_consistent_empty {Σ} :
⊢
iProto_consistent
(
@
iProto_empty
Σ
)
.
Proof
.
iProto_consistent_take_step
.
Qed
.
Definition
iProto_binary
`{
!
inv
GS
Σ
}
:
gmap
nat
(
iProto
Σ
)
:=
Definition
iProto_binary
`{
!
heap
GS
Σ
}
:
gmap
nat
(
iProto
Σ
)
:=
<
[
0
:=
(
<
(
Send
,
1
)
@
(
x
:
Z
)
>
MSG
#
x
;
END
)
%
proto
]
>
(
<
[
1
:=
(
<
(
Recv
,
0
)
@
(
x
:
Z
)
>
MSG
#
x
;
END
)
%
proto
]
>
∅
)
.
Lemma
iProto_binary_consistent
`{
!
inv
GS
Σ
}
:
⊢
iProto_consistent
(
@
iProto_binary
Σ
invGS0
)
.
Lemma
iProto_binary_consistent
`{
!
heap
GS
Σ
}
:
⊢
iProto_consistent
iProto_binary
.
Proof
.
rewrite
/
iProto_binary
.
iProto_consistent_take_step
.
...
...
@@ -21,24 +21,6 @@ Proof.
iProto_consistent_take_step
.
Qed
.
Definition
iProto_roundtrip
`{
!
invGS
Σ
}
:
gmap
nat
(
iProto
Σ
)
:=
<
[
0
:=
(
<
(
Send
,
1
)
@
(
x
:
Z
)
>
MSG
#
x
;
<
(
Recv
,
2
)
>
MSG
#
x
;
END
)
%
proto
]
>
(
<
[
1
:=
(
<
(
Recv
,
0
)
@
(
x
:
Z
)
>
MSG
#
x
;
<
(
Send
,
2
)
>
MSG
#
x
;
END
)
%
proto
]
>
(
<
[
2
:=
(
<
(
Recv
,
1
)
@
(
x
:
Z
)
>
MSG
#
x
;
<
(
Send
,
0
)
>
MSG
#
x
;
END
)
%
proto
]
>
∅
))
.
Lemma
iProto_roundtrip_consistent
`{
!
invGS
Σ
}
:
⊢
iProto_consistent
(
@
iProto_roundtrip
Σ
invGS0
)
.
Proof
.
rewrite
/
iProto_roundtrip
.
iProto_consistent_take_step
.
iIntros
(
x
)
"_"
.
iExists
x
.
iSplit
;
[
done
|]
.
iSplit
;
[
done
|]
.
iProto_consistent_take_step
.
iIntros
"_"
.
iExists
x
.
iSplit
;
[
done
|]
.
iSplit
;
[
done
|]
.
iProto_consistent_take_step
.
iIntros
"_"
.
iSplit
;
[
done
|]
.
iSplit
;
[
done
|]
.
iProto_consistent_take_step
.
Qed
.
Definition
roundtrip_prog
:
val
:=
λ
:
<>
,
let
:
"cs"
:=
new_chan
#
3
in
...
...
@@ -51,18 +33,32 @@ Definition roundtrip_prog : val :=
Section
channel
.
Context
`{
!
heapGS
Σ
,
!
chanG
Σ
}
.
Implicit
Types
p
:
iProto
Σ
.
Implicit
Types
TT
:
tele
.
Definition
iProto_roundtrip
:
gmap
nat
(
iProto
Σ
)
:=
<
[
0
:=
(
<
(
Send
,
1
)
@
(
x
:
Z
)
>
MSG
#
x
;
<
(
Recv
,
2
)
>
MSG
#
x
;
END
)
%
proto
]
>
(
<
[
1
:=
(
<
(
Recv
,
0
)
@
(
x
:
Z
)
>
MSG
#
x
;
<
(
Send
,
2
)
>
MSG
#
x
;
END
)
%
proto
]
>
(
<
[
2
:=
(
<
(
Recv
,
1
)
@
(
x
:
Z
)
>
MSG
#
x
;
<
(
Send
,
0
)
>
MSG
#
x
;
END
)
%
proto
]
>
∅
))
.
Lemma
iProto_roundtrip_consistent
:
⊢
iProto_consistent
iProto_roundtrip
.
Proof
.
rewrite
/
iProto_roundtrip
.
iProto_consistent_take_step
.
iIntros
(
x
)
"_"
.
iExists
x
.
iSplit
;
[
done
|]
.
iSplit
;
[
done
|]
.
iProto_consistent_take_step
.
iIntros
"_"
.
iExists
x
.
iSplit
;
[
done
|]
.
iSplit
;
[
done
|]
.
iProto_consistent_take_step
.
iIntros
"_"
.
iSplit
;
[
done
|]
.
iSplit
;
[
done
|]
.
iProto_consistent_take_step
.
Qed
.
(* TODO: Fix nat/Z coercion. *)
Lemma
roundtrip_prog_spec
:
{{{
True
}}}
roundtrip_prog
#
()
{{{
RET
#
42
;
True
}}}
.
Proof
using
chanG0
heapGS0
Σ
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_smart_apply
(
new_chan_spec
3
iProto_roundtrip
)
.
{
lia
.
}
{
set_solver
.
}
{
iApply
iProto_roundtrip_consistent
.
}
wp_smart_apply
(
new_chan_spec
3
iProto_roundtrip
);
[
lia
|
set_solver
|
iApply
iProto_roundtrip_consistent
|]
.
iIntros
(
cs
)
"Hcs"
.
wp_smart_apply
(
get_chan_spec
_
0
with
"Hcs"
);
[
set_solver
|]
.
iIntros
(
c0
)
"[Hc0 Hcs]"
.
...
...
@@ -74,15 +70,23 @@ Section channel.
{
iIntros
"!>"
.
wp_recv
(
x
)
as
"_"
.
wp_send
with
"[//]"
.
done
.
}
wp_smart_apply
(
wp_fork
with
"[Hc2]"
)
.
{
iIntros
"!>"
.
wp_recv
(
x
)
as
"_"
.
wp_send
with
"[//]"
.
done
.
}
wp_send
with
"[//]"
.
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
wp_send
with
"[//]"
.
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
Qed
.
End
channel
.
Definition
roundtrip_ref_prog
:
val
:=
λ
:
<>
,
let
:
"cs"
:=
new_chan
#
3
in
let
:
"c0"
:=
get_chan
"cs"
#
0
in
let
:
"c1"
:=
get_chan
"cs"
#
1
in
let
:
"c2"
:=
get_chan
"cs"
#
2
in
Fork
(
let
:
"l"
:=
recv
"c1"
#
0
in
"l"
<-
!
"l"
+
#
1
;;
send
"c1"
#
2
"l"
);;
Fork
(
let
:
"l"
:=
recv
"c2"
#
1
in
"l"
<-
!
"l"
+
#
1
;;
send
"c2"
#
0
#
());;
let
:
"l"
:=
ref
#
40
in
send
"c0"
#
1
"l"
;;
recv
"c0"
#
2
;;
!
"l"
.
Section
roundtrip_ref
.
Context
`{
!
heapGS
Σ
}
.
Context
`{
!
heapGS
Σ
,
!
chanG
Σ
}
.
Definition
iProto_roundtrip_ref
:
gmap
nat
(
iProto
Σ
)
:=
<
[
0
:=
(
<
(
Send
,
1
)
@
(
l
:
loc
)
(
x
:
Z
)
>
MSG
#
l
{{
(
l
↦
#
x
)
%
I
}}
;
...
...
@@ -107,23 +111,6 @@ Section roundtrip_ref.
iProto_consistent_take_step
.
Qed
.
End
roundtrip_ref
.
Definition
roundtrip_ref_prog
:
val
:=
λ
:
<>
,
let
:
"cs"
:=
new_chan
#
3
in
let
:
"c0"
:=
get_chan
"cs"
#
0
in
let
:
"c1"
:=
get_chan
"cs"
#
1
in
let
:
"c2"
:=
get_chan
"cs"
#
2
in
Fork
(
let
:
"l"
:=
recv
"c1"
#
0
in
"l"
<-
!
"l"
+
#
1
;;
send
"c1"
#
2
"l"
);;
Fork
(
let
:
"l"
:=
recv
"c2"
#
1
in
"l"
<-
!
"l"
+
#
1
;;
send
"c2"
#
0
#
());;
let
:
"l"
:=
ref
#
40
in
send
"c0"
#
1
"l"
;;
recv
"c0"
#
2
;;
!
"l"
.
Section
proof
.
Context
`{
!
heapGS
Σ
,
!
chanG
Σ
}
.
Implicit
Types
p
:
iProto
Σ
.
Implicit
Types
TT
:
tele
.
Lemma
roundtrip_ref_prog_spec
:
{{{
True
}}}
roundtrip_ref_prog
#
()
{{{
RET
#
42
;
True
}}}
.
Proof
using
chanG0
.
...
...
@@ -149,27 +136,39 @@ Section proof.
by
iApply
"HΦ"
.
Qed
.
End
proof
.
End
roundtrip_ref
.
Definition
roundtrip_ref_rec_prog
:
val
:=
λ
:
<>
,
let
:
"cs"
:=
new_chan
#
3
in
let
:
"c0"
:=
get_chan
"cs"
#
0
in
let
:
"c1"
:=
get_chan
"cs"
#
1
in
let
:
"c2"
:=
get_chan
"cs"
#
2
in
Fork
((
rec
:
"go"
"c1"
:=
let
:
"l"
:=
recv
"c1"
#
0
in
"l"
<-
!
"l"
+
#
1
;;
send
"c1"
#
2
"l"
;;
"go"
"c1"
)
"c1"
);;
Fork
((
rec
:
"go"
"c2"
:=
let
:
"l"
:=
recv
"c2"
#
1
in
"l"
<-
!
"l"
+
#
1
;;
send
"c2"
#
0
#
();;
"go"
"c2"
)
"c2"
);;
let
:
"l"
:=
ref
#
38
in
send
"c0"
#
1
"l"
;;
recv
"c0"
#
2
;;
send
"c0"
#
1
"l"
;;
recv
"c0"
#
2
;;
!
"l"
.
Section
roundtrip_ref_rec
.
Context
`{
!
heapGS
Σ
}
.
Context
`{
!
heapGS
Σ
,
!
chanG
Σ
}
.
Definition
iProto_roundtrip_ref_rec1_aux
(
rec
:
iProto
Σ
)
:
iProto
Σ
:=
(
<
(
Send
,
1
)
@
(
l
:
loc
)
(
x
:
Z
)
>
MSG
#
l
{{
(
l
↦
#
x
)
%
I
}}
;
<
(
Recv
,
2
)
>
MSG
#
()
{{
l
↦
#
(
x
+
2
)
}}
;
rec
)
%
proto
.
Instance
iProto_roundtrip_ref_rec1_contractive
:
Contractive
iProto_roundtrip_ref_rec1_aux
.
Proof
.
solve_proto_contractive
.
Qed
.
Definition
iProto_roundtrip_ref_rec1
:=
fixpoint
iProto_roundtrip_ref_rec1_aux
.
Lemma
iProto_roundtrip_ref_rec1_unfold
:
iProto_roundtrip_ref_rec1
≡
(
iProto_roundtrip_ref_rec1_aux
iProto_roundtrip_ref_rec1
)
.
Proof
.
apply
(
fixpoint_unfold
_)
.
Qed
.
Global
Instance
iProto_roundtrip_ref_rec1_proto_unfold
:
ProtoUnfold
iProto_roundtrip_ref_rec1
(
iProto_roundtrip_ref_rec1_aux
iProto_roundtrip_ref_rec1
)
.
...
...
@@ -178,14 +177,11 @@ Section roundtrip_ref_rec.
Definition
iProto_roundtrip_ref_rec2_aux
(
rec
:
iProto
Σ
)
:
iProto
Σ
:=
(
<
(
Recv
,
0
)
@
(
l
:
loc
)
(
x
:
Z
)
>
MSG
#
l
{{
(
l
↦
#
x
)
%
I
}}
;
<
(
Send
,
2
)
>
MSG
#
l
{{
l
↦
#
(
x
+
1
)
}};
rec
)
%
proto
.
Instance
iProto_roundtrip_ref_rec2_contractive
:
Contractive
iProto_roundtrip_ref_rec2_aux
.
Proof
.
solve_proto_contractive
.
Qed
.
Definition
iProto_roundtrip_ref_rec2
:=
fixpoint
iProto_roundtrip_ref_rec2_aux
.
Lemma
iProto_roundtrip_ref_rec2_unfold
:
iProto_roundtrip_ref_rec2
≡
(
iProto_roundtrip_ref_rec2_aux
iProto_roundtrip_ref_rec2
)
.
...
...
@@ -195,23 +191,18 @@ Section roundtrip_ref_rec.
ProtoUnfold
iProto_roundtrip_ref_rec2
(
iProto_roundtrip_ref_rec2_aux
iProto_roundtrip_ref_rec2
)
.
Proof
.
apply
proto_unfold_eq
,
(
fixpoint_unfold
_)
.
Qed
.
Definition
iProto_roundtrip_ref_rec3_aux
(
rec
:
iProto
Σ
)
:
iProto
Σ
:=
(
<
(
Recv
,
1
)
@
(
l
:
loc
)
(
x
:
Z
)
>
MSG
#
l
{{
(
l
↦
#
x
)
%
I
}}
;
<
(
Send
,
0
)
>
MSG
#
()
{{
l
↦
#
(
x
+
1
)
}};
rec
)
%
proto
.
Instance
iProto_roundtrip_ref_rec3_contractive
:
Contractive
iProto_roundtrip_ref_rec3_aux
.
Proof
.
solve_proto_contractive
.
Qed
.
Definition
iProto_roundtrip_ref_rec3
:=
fixpoint
iProto_roundtrip_ref_rec3_aux
.
Lemma
iProto_roundtrip_ref_rec3_unfold
:
iProto_roundtrip_ref_rec3
≡
(
iProto_roundtrip_ref_rec3_aux
iProto_roundtrip_ref_rec3
)
.
Proof
.
apply
(
fixpoint_unfold
_)
.
Qed
.
Global
Instance
iProto_roundtrip_ref_rec3_proto_unfold
:
ProtoUnfold
iProto_roundtrip_ref_rec3
(
iProto_roundtrip_ref_rec3_aux
iProto_roundtrip_ref_rec3
)
.
...
...
@@ -243,29 +234,6 @@ Section roundtrip_ref_rec.
done
.
Qed
.
End
roundtrip_ref_rec
.
Definition
roundtrip_ref_rec_prog
:
val
:=
λ
:
<>
,
let
:
"cs"
:=
new_chan
#
3
in
let
:
"c0"
:=
get_chan
"cs"
#
0
in
let
:
"c1"
:=
get_chan
"cs"
#
1
in
let
:
"c2"
:=
get_chan
"cs"
#
2
in
Fork
((
rec
:
"go"
"c1"
:=
let
:
"l"
:=
recv
"c1"
#
0
in
"l"
<-
!
"l"
+
#
1
;;
send
"c1"
#
2
"l"
;;
"go"
"c1"
)
"c1"
);;
Fork
((
rec
:
"go"
"c2"
:=
let
:
"l"
:=
recv
"c2"
#
1
in
"l"
<-
!
"l"
+
#
1
;;
send
"c2"
#
0
#
();;
"go"
"c2"
)
"c2"
);;
let
:
"l"
:=
ref
#
38
in
send
"c0"
#
1
"l"
;;
recv
"c0"
#
2
;;
send
"c0"
#
1
"l"
;;
recv
"c0"
#
2
;;
!
"l"
.
Section
proof
.
Context
`{
!
heapGS
Σ
,
!
chanG
Σ
}
.
Implicit
Types
p
:
iProto
Σ
.
Implicit
Types
TT
:
tele
.
Lemma
roundtrip_ref_rec_prog_spec
:
{{{
True
}}}
roundtrip_ref_rec_prog
#
()
{{{
RET
#
42
;
True
}}}
.
Proof
using
chanG0
.
...
...
@@ -294,21 +262,12 @@ Section proof.
by
iApply
"HΦ"
.
Qed
.
End
p
ro
of
.
End
ro
undtrip_ref_rec
.
Section
parallel
.
Context
`{
!
heapGS
Σ
}
.
(**
0 -> 1 : (x1:Z) < x1 > .
0 -> 2 : (x2:Z) < x2 > .
2 -> 3 : (y1:Z) < x1+y1 > ;
3 -> 4 : (y2:Z) < x2+y2 > ;
3 -> 0 : < x1+y1 > ;
4 -> 0 : < x2+y2 > ;
end
0
/ \
1 2
...
...
@@ -541,10 +500,21 @@ Section two_buyer_ref.
End
two_buyer_ref
.
Section
f
wd
.
Section
f
orwarder
.
Context
`{
!
heapGS
Σ
}
.
Definition
iProto_fwd
:
gmap
nat
(
iProto
Σ
)
:=
(**
0
/ | \
/ | \
| 1 |
\ / \ /
2 3
*)
Definition
iProto_forwarder
:
gmap
nat
(
iProto
Σ
)
:=
<
[
0
:=
(
<
(
Send
,
1
)
@
(
x
:
Z
)
>
MSG
#
x
;
<
(
Send
,
1
)
@
(
b
:
bool
)
>
MSG
#
b
;
<
(
Send
,
if
b
then
2
else
3
)
>
MSG
#
x
;
END
)
%
proto
]
>
...
...
@@ -558,10 +528,10 @@ Section fwd.
(
<
[
3
:=
(
<
(
Recv
,
1
)
@
(
x
:
Z
)
>
MSG
#
x
;
<
(
Send
,
0
)
>
MSG
#
x
;
END
)
%
proto
]
>
∅
)))
.
Lemma
iProto_f
wd
_consistent
:
⊢
iProto_consistent
iProto_f
wd
.
Lemma
iProto_f
orwarder
_consistent
:
⊢
iProto_consistent
iProto_f
orwarder
.
Proof
.
rewrite
/
iProto_f
wd
.
rewrite
/
iProto_f
orwarder
.
iProto_consistent_take_step
.
iIntros
(
x
)
"_"
.
iExists
_
.
iSplit
;
[
done
|]
.
iSplit
;
[
done
|]
.
iProto_consistent_take_step
.
...
...
@@ -576,4 +546,4 @@ Section fwd.
iProto_consistent_take_step
.
Qed
.
End
f
wd
.
End
f
orwarder
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment