Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
Actris
Commits
ec1c6439
Commit
ec1c6439
authored
4 years ago
by
Robbert Krebbers
Committed by
Jonas Kastberg
4 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Clean up.
parent
6d9c6220
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#26924
passed
4 years ago
Stage: build
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/logrel/subtyping.v
+28
-36
28 additions, 36 deletions
theories/logrel/subtyping.v
with
28 additions
and
36 deletions
theories/logrel/subtyping.v
+
28
−
36
View file @
ec1c6439
...
@@ -295,58 +295,50 @@ Section subtype.
...
@@ -295,58 +295,50 @@ Section subtype.
Lemma
lsty_le_app_assoc_l
S1
S2
S3
:
Lemma
lsty_le_app_assoc_l
S1
S2
S3
:
⊢
S1
<++>
(
S2
<++>
S3
)
<
s
:
(
S1
<++>
S2
)
<++>
S3
.
⊢
S1
<++>
(
S2
<++>
S3
)
<
s
:
(
S1
<++>
S2
)
<++>
S3
.
Proof
.
rewrite
assoc
.
iApply
lsty_le_refl
.
Qed
.
Proof
.
rewrite
assoc
.
iApply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_app_assoc_r
S1
S2
S3
:
Lemma
lsty_le_app_assoc_r
S1
S2
S3
:
⊢
(
S1
<++>
S2
)
<++>
S3
<
s
:
S1
<++>
(
S2
<++>
S3
)
.
⊢
(
S1
<++>
S2
)
<++>
S3
<
s
:
S1
<++>
(
S2
<++>
S3
)
.
Proof
.
rewrite
assoc
.
iApply
lsty_le_refl
.
Qed
.
Proof
.
rewrite
assoc
.
iApply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_app_id_l_l
S
:
Lemma
lsty_le_app_id_l_l
S
:
⊢
(
END
<++>
S
)
<
s
:
S
.
⊢
(
END
<++>
S
)
<
s
:
S
.
Proof
.
rewrite
left_id
.
iApply
lsty_le_refl
.
Qed
.
Proof
.
rewrite
left_id
.
iApply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_app_id_l_r
S
:
⊢
(
S
<++>
END
)
<
s
:
S
.
Lemma
lsty_le_app_id_l_r
S
:
⊢
(
S
<++>
END
)
<
s
:
S
.
Proof
.
rewrite
right_id
.
iApply
lsty_le_refl
.
Qed
.
Proof
.
rewrite
right_id
.
iApply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_app_id_r_l
S
:
⊢
S
<
s
:
(
END
<++>
S
)
.
Lemma
lsty_le_app_id_r_l
S
:
⊢
S
<
s
:
(
END
<++>
S
)
.
Proof
.
rewrite
left_id
.
iApply
lsty_le_refl
.
Qed
.
Proof
.
rewrite
left_id
.
iApply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_app_id_r_r
S
:
⊢
S
<
s
:
(
S
<++>
END
)
.
Lemma
lsty_le_app_id_r_r
S
:
⊢
S
<
s
:
(
S
<++>
END
)
.
Proof
.
rewrite
right_id
.
iApply
lsty_le_refl
.
Qed
.
Proof
.
rewrite
right_id
.
iApply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_dual
S1
S2
:
S2
<
s
:
S1
-∗
lsty_dual
S1
<
s
:
lsty_dual
S2
.
Lemma
lsty_le_dual
S1
S2
:
S2
<
s
:
S1
-∗
lsty_dual
S1
<
s
:
lsty_dual
S2
.
Proof
.
iIntros
"#H !>"
.
by
iApply
iProto_le_dual
.
Qed
.
Proof
.
iIntros
"#H !>"
.
by
iApply
iProto_le_dual
.
Qed
.
Lemma
lsty_le_dual_send_l
A
S
:
⊢
(
lsty_dual
(
<!!>
A
;
S
))
<
s
:
(
<
??
>
A
;(
lsty_dual
S
))
.
Proof
.
rewrite
/
lsty_le
/
lsty_dual
/
lsty_send
/
lsty_recv
/
lsty_message
iProto_dual_message
/=.
iIntros
"!>"
.
rewrite
{
1
}
/
lsty_car
/=.
iApply
iProto_le_refl
.
Admitted
.
Lemma
lsty_le_dual_send_r
A
S
:
⊢
(
<!!>
A
;(
lsty_dual
S
))
<
s
:
lsty_dual
(
<
??
>
A
;
S
)
.
Proof
.
Admitted
.
Lemma
lsty_le_dual_recv_l
A
S
:
⊢
(
lsty_dual
(
<
??
>
A
;
S
))
<
s
:
(
<!!>
A
;(
lsty_dual
S
))
.
Proof
.
Admitted
.
Lemma
lsty_le_dual_recv_r
A
S
:
⊢
(
<
??
>
A
;(
lsty_dual
S
))
<
s
:
lsty_dual
(
<!!>
A
;
S
)
.
Proof
.
Admitted
.
Lemma
lsty_le_dual_end_l
:
⊢
(
lsty_dual
(
Σ
:=
Σ
)
END
)
<
s
:
END
.
Proof
.
rewrite
/
lsty_dual
iProto_dual_end
=>
/=.
apply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_dual_end_r
:
⊢
END
<
s
:
(
lsty_dual
(
Σ
:=
Σ
)
END
)
.
Proof
.
rewrite
/
lsty_dual
iProto_dual_end
=>
/=.
apply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_dual_l
S1
S2
:
lsty_dual
S2
<
s
:
S1
-∗
lsty_dual
S1
<
s
:
S2
.
Lemma
lsty_le_dual_l
S1
S2
:
lsty_dual
S2
<
s
:
S1
-∗
lsty_dual
S1
<
s
:
S2
.
Proof
.
iIntros
"#H !>"
.
by
iApply
iProto_le_dual_l
.
Qed
.
Proof
.
iIntros
"#H !>"
.
by
iApply
iProto_le_dual_l
.
Qed
.
Lemma
lsty_le_dual_r
S1
S2
:
S2
<
s
:
lsty_dual
S1
-∗
S1
<
s
:
lsty_dual
S2
.
Lemma
lsty_le_dual_r
S1
S2
:
S2
<
s
:
lsty_dual
S1
-∗
S1
<
s
:
lsty_dual
S2
.
Proof
.
iIntros
"#H !>"
.
by
iApply
iProto_le_dual_r
.
Qed
.
Proof
.
iIntros
"#H !>"
.
by
iApply
iProto_le_dual_r
.
Qed
.
Lemma
lsty_le_dual_message_l
a
A
S
:
⊢
lsty_dual
(
lsty_message
a
A
S
)
<
s
:
lsty_message
(
action_dual
a
)
A
(
lsty_dual
S
)
.
Proof
.
iIntros
"!>"
.
rewrite
/
lsty_dual
iProto_dual_message_tele
.
iApply
iProto_le_refl
.
Qed
.
Lemma
lsty_le_dual_message_r
a
A
S
:
⊢
lsty_message
(
action_dual
a
)
A
(
lsty_dual
S
)
<
s
:
lsty_dual
(
lsty_message
a
A
S
)
.
Proof
.
iIntros
"!>"
.
rewrite
/
lsty_dual
iProto_dual_message_tele
.
iApply
iProto_le_refl
.
Qed
.
Lemma
lsty_le_dual_send_l
A
S
:
⊢
lsty_dual
(
<!!>
A
;
S
)
<
s
:
(
<
??
>
A
;
lsty_dual
S
)
.
Proof
.
apply
lsty_le_dual_message_l
.
Qed
.
Lemma
lsty_le_dual_send_r
A
S
:
⊢
(
<!!>
A
;
lsty_dual
S
)
<
s
:
lsty_dual
(
<
??
>
A
;
S
)
.
Proof
.
apply
:
lsty_le_dual_message_r
.
Qed
.
Lemma
lsty_le_dual_recv_l
A
S
:
⊢
lsty_dual
(
<
??
>
A
;
S
)
<
s
:
(
<!!>
A
;
lsty_dual
S
)
.
Proof
.
apply
lsty_le_dual_message_l
.
Qed
.
Lemma
lsty_le_dual_recv_r
A
S
:
⊢
(
<
??
>
A
;
lsty_dual
S
)
<
s
:
lsty_dual
(
<!!>
A
;
S
)
.
Proof
.
apply
:
lsty_le_dual_message_r
.
Qed
.
Lemma
lsty_le_dual_end_l
:
⊢
lsty_dual
(
Σ
:=
Σ
)
END
<
s
:
END
.
Proof
.
rewrite
/
lsty_dual
iProto_dual_end
=>
/=.
apply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_dual_end_r
:
⊢
END
<
s
:
lsty_dual
(
Σ
:=
Σ
)
END
.
Proof
.
rewrite
/
lsty_dual
iProto_dual_end
=>
/=.
apply
lsty_le_refl
.
Qed
.
Lemma
lsty_le_rec_1
(
C
:
lsty
Σ
→
lsty
Σ
)
`{
!
Contractive
C
}
:
Lemma
lsty_le_rec_1
(
C
:
lsty
Σ
→
lsty
Σ
)
`{
!
Contractive
C
}
:
⊢
lsty_rec
C
<
s
:
C
(
lsty_rec
C
)
.
⊢
lsty_rec
C
<
s
:
C
(
lsty_rec
C
)
.
Proof
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment