Skip to content
Snippets Groups Projects
Commit e29d18e2 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Add `contribution` abstraction.

parent 8cc34257
No related branches found
No related tags found
No related merge requests found
......@@ -5,6 +5,7 @@ theories/utils/encodable.v
theories/utils/list.v
theories/utils/compare.v
theories/utils/spin_lock.v
theories/utils/contribution.v
theories/channel/channel.v
theories/channel/proto_model.v
theories/channel/proto_channel.v
......
From iris.base_logic Require Export base_logic lib.iprop lib.own.
From iris.proofmode Require Export tactics.
From iris.algebra Require Import excl auth csum gmultiset frac_auth.
Class contributionG Σ (A : ucmraT) `{!CmraDiscrete A} := {
contribution_inG :> inG Σ
(authR (optionUR (csumR (prodR positiveR A) (exclR unitO))))
}.
Definition server `{contributionG Σ A} (γ : gname) (n : nat) (x : A) : iProp Σ :=
(if decide (n = O)
then x ε own γ ( (Some (Cinr (Excl ())))) own γ ( (Some (Cinr (Excl ()))))
else own γ ( (Some (Cinl (Pos.of_nat n, x)))))%I.
Typeclasses Opaque server.
Instance: Params (@server) 6.
Definition client `{contributionG Σ A} (γ : gname) (x : A) : iProp Σ :=
own γ ( (Some (Cinl (1%positive, x)))).
Typeclasses Opaque client.
Instance: Params (@client) 5.
Section contribution.
Context `{contributionG Σ A}.
Implicit Types x y : A.
Global Instance server_ne γ n : NonExpansive (server γ n).
Proof. solve_proper. Qed.
Global Instance server_proper γ n : Proper (() ==> ()) (server γ n).
Proof. apply (ne_proper _). Qed.
Global Instance client_ne γ : NonExpansive (client γ).
Proof. solve_proper. Qed.
Global Instance client_proper γ : Proper (() ==> ()) (client γ).
Proof. apply (ne_proper _). Qed.
Lemma contribution_init : (|==> γ, server γ 0 ε)%I.
Proof.
iMod (own_alloc ( (Some (Cinr (Excl ()))) (Some (Cinr (Excl ())))))
as (γ) "[Hγ Hγ']"; first by apply auth_both_valid_2.
iExists γ. rewrite /server. by case_decide; auto with iFrame.
Qed.
Lemma server_0_empty γ x : server γ 0 x -∗ x ε.
Proof. rewrite /server. case_decide=> //. iIntros "[? _] //". Qed.
Lemma server_1_agree γ x y : server γ 1 x -∗ client γ y -∗ x y ⌝.
Proof.
rewrite /server /client. case_decide=> //. iIntros "Hs Hc".
iDestruct (own_valid_2 with "Hs Hc")
as %[[[_ ?]%(inj Cinl)|Hincl]%Some_included _]%auth_both_valid; first done.
move: Hincl. rewrite Cinl_included prod_included /= pos_included=> -[? _].
by destruct (Pos.lt_irrefl 1).
Qed.
Lemma server_valid γ n x : server γ n x -∗ x.
Proof.
rewrite /server. case_decide.
- iDestruct 1 as (->) "_". iPureIntro. apply ucmra_unit_valid.
- iIntros "Hs". iDestruct (own_valid with "Hs") as %Hv.
move: Hv. by rewrite auth_auth_valid=> -[??].
Qed.
Lemma client_valid γ x : client γ x -∗ x.
Proof.
rewrite /client. iIntros "Hs". iDestruct (own_valid with "Hs") as %Hv.
move: Hv. by rewrite auth_frag_valid=> -[??].
Qed.
Lemma server_agree γ n x y : server γ n x -∗ client γ y -∗ n 0 y x ⌝.
Proof.
rewrite /server /client. iIntros "Hs Hc". case_decide; subst.
- iDestruct "Hs" as "(_ & _ & Hc')".
by iDestruct (own_valid_2 with "Hc Hc'") as %?.
- iDestruct (own_valid_2 with "Hs Hc")
as %[[[??]%(inj Cinl)|Hincl]%Some_included _]%auth_both_valid.
{ setoid_subst. by destruct n. }
move: Hincl. rewrite Cinl_included prod_included /= pos_included=> -[??].
by destruct n.
Qed.
Lemma alloc_client γ n x x' y' :
(x,ε) ~l~> (x',y')
server γ n x ==∗ server γ (S n) x' client γ y'.
Proof.
intros Hup. rewrite /server /client.
destruct (decide (n = 0)) as [->|?]; case_decide; try done.
- iDestruct 1 as (Hx) "[Hs Hc]"; setoid_subst.
iMod (own_update_2 with "Hs Hc") as "[$ $]"; last done.
apply auth_update, option_local_update.
eapply transitivity with (Cinl (Pos.of_nat 1, ε), Cinl (1%positive, ε)).
{ apply exclusive_local_update. split; [done|]. apply ucmra_unit_valid. }
by apply csum_local_update_l, prod_local_update_2.
- iIntros "Hs". iMod (own_update with "Hs") as "[$ $]"; last done.
eapply auth_update_alloc, transitivity
with (Some (Cinl (Pos.of_nat (S n), x)), Some (Cinl (1%positive, ε))).
{ rewrite Nat2Pos.inj_succ // -Pos.add_1_l -{2}(left_id ε op x).
rewrite -(right_id _ _ (Some (Cinl (1%positive, _)))).
rewrite -pair_op -Cinl_op Some_op. apply op_local_update_discrete.
intros [??]; split=> //=. by rewrite left_id. }
by apply option_local_update, csum_local_update_l, prod_local_update_2.
Qed.
Lemma dealloc_client γ n x y :
Cancelable y
server γ n (x y) -∗ client γ y ==∗ server γ (pred n) x.
Proof.
iIntros (?) "Hs Hc". iDestruct (server_valid with "Hs") as %Hv.
destruct (decide (n = 1)) as [->|]; simpl.
- iDestruct (server_1_agree with "Hs Hc") as %Hxy.
move: Hxy. rewrite {1}(comm _ x) -{2}(right_id ε _ y)=> /cancelable.
rewrite {1}comm=> /(_ Hv) ->. rewrite left_id.
rewrite /server /client; repeat case_decide=> //.
iMod (own_update_2 with "Hs Hc") as "[$ $]"; last done.
by apply auth_update, option_local_update, (replace_local_update _ _).
- iDestruct (server_agree with "Hs Hc") as %[? [z Hxy]].
move: Hxy. rewrite (comm _ x)=> /cancelable.
rewrite {1}comm=> /(_ Hv) ->.
rewrite /server /client. destruct n as [|[|n]]; case_decide=>//=.
iApply (own_update_2 with "Hs Hc"). apply auth_update_dealloc.
rewrite -(right_id _ _ (Some (Cinl (1%positive, _)))).
rewrite Nat2Pos.inj_succ // -Pos.add_1_l.
rewrite -pair_op -Cinl_op Some_op. apply (cancel_local_update _ _ _).
Qed.
Lemma update_client γ n x y x' y' :
(x,y) ~l~> (x',y')
server γ n x -∗ client γ y ==∗ server γ n x' client γ y'.
Proof.
iIntros (?) "Hs Hc". destruct (decide (n = 1)) as [->|]; simpl.
- iDestruct (server_1_agree with "Hs Hc") as %?; setoid_subst.
rewrite /server /client. case_decide=> //=.
iMod (own_update_2 with "Hs Hc") as "[$ $]"; last done.
by apply auth_update, option_local_update,
csum_local_update_l, prod_local_update_2.
- iDestruct (server_agree with "Hs Hc") as %[??].
rewrite /server /client. case_decide=> //=.
iMod (own_update_2 with "Hs Hc") as "[$ $]"; last done.
by apply auth_update, option_local_update,
csum_local_update_l, prod_local_update_2.
Qed.
End contribution.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment