Skip to content
Snippets Groups Projects
Commit e05d2403 authored by Jonas Kastberg Hinrichsen's avatar Jonas Kastberg Hinrichsen
Browse files

Introduced encoded session types

parent 1b3eb3df
No related branches found
No related tags found
No related merge requests found
...@@ -5,3 +5,4 @@ theories/auth_excl.v ...@@ -5,3 +5,4 @@ theories/auth_excl.v
theories/typing.v theories/typing.v
theories/channel.v theories/channel.v
theories/logrel.v theories/logrel.v
theories/encodable.v
From iris.proofmode Require Import tactics.
From iris.program_logic Require Export weakestpre.
From iris.heap_lang Require Import proofmode notation.
From osiris Require Import typing channel logrel.
From iris.algebra Require Import list auth excl.
From iris.base_logic Require Import invariants.
Class Encodable A := encode : A -> val.
Instance val_encodable : Encodable val := id.
Instance int_encodable : Encodable Z := λ n, #n.
Instance bool_encodable : Encodable bool := λ b, #b.
Instance unit_encodable : Encodable unit := λ _, #().
Instance loc_encodable : Encodable loc := λ l, #l.
Class Decodable A := decode : val -> option A.
Instance val_decodable : Decodable val := id $ Some.
Instance int_decodable : Decodable Z :=
λ v, match v with
| LitV (LitInt z) => Some z
| _ => None
end.
Instance bool_decodable : Decodable bool :=
λ v, match v with
| LitV (LitBool b) => Some b
| _ => None
end.
Instance loc_decodable : Decodable loc :=
λ v, match v with
| LitV (LitLoc l) => Some l
| _ => None
end.
Class EncDec (A : Type) {EA : Encodable A} {DA : Decodable A} :=
{
encdec : v, decode (encode v) = Some v;
decenc : (v : val) (w : A) , decode v = Some w -> encode w = v
}.
Ltac solve_encdec := intros v; by unfold decode, encode.
Ltac solve_decenc :=
intros v w H;
destruct v as [l | | | | ]; try by inversion H;
destruct l; try by inversion H.
Ltac solve_encdec_decenc :=
split; [solve_encdec | solve_decenc].
Instance val_encdec : EncDec val.
Proof.
split.
- intros v. unfold decode, encode. eauto.
- intros v w H. by destruct v; inversion H.
Qed.
Instance int_encdec : EncDec Z.
Proof. solve_encdec_decenc. Qed.
Instance bool_encdec : EncDec bool.
Proof. solve_encdec_decenc. Qed.
Instance loc_encdec : EncDec loc.
Proof. solve_encdec_decenc. Qed.
Lemma enc_dec {A : Type} `{ED : EncDec A}
v (w : A) : encode w = v <-> decode v = Some w.
Proof.
split.
- intros.
rewrite -encdec.
rewrite -H.
reflexivity.
- intros.
apply decenc. eauto.
Qed.
Inductive stype' (A : Type) :=
| TEnd'
| TSR' {V : Type} {EV : Encodable V} {DV : Decodable V}
(a : action) (P : V A) (st : V stype' A).
Arguments TEnd' {_}.
Arguments TSR' {_ _ _ _} _ _ _.
Instance: Params (@TSR') 4.
Fixpoint dual_stype' {A} (st : stype' A) :=
match st with
| TEnd' => TEnd'
| TSR' a P st => TSR' (dual_action a) P (λ v, dual_stype' (st v))
end.
Instance: Params (@dual_stype') 2.
Arguments dual_stype : simpl never.
Section Encodings.
Context `{!heapG Σ} (N : namespace).
Context `{!logrelG val Σ}.
Example ex_st : stype' (iProp Σ) :=
(TSR' Receive
(λ v', v' = 5⌝%I)
(λ v', TEnd')).
Example ex_st2 : stype' (iProp Σ) :=
TSR' Send
(λ b, b = true⌝%I)
(λ b,
(TSR' Receive
(λ v', (v' > 5) = b⌝%I)
(λ _, TEnd'))).
Fixpoint stype'_to_stype (st : stype' (iProp Σ)) : stype val (iProp Σ) :=
match st with
| TEnd' => TEnd
| TSR' a P st => TSR a
(λ v, match decode v with
| Some v => P v
| None => False
end%I)
(λ v, match decode v with
| Some v => stype'_to_stype (st v)
| None => TEnd
end)
end.
Global Instance: Params (@stype'_to_stype) 1.
Global Arguments stype'_to_stype : simpl never.
Lemma dual_stype'_comm st :
dual_stype (stype'_to_stype st) stype'_to_stype (dual_stype' st).
Proof.
induction st.
- by simpl.
- unfold stype'_to_stype. simpl.
constructor.
+ intros v. eauto.
+ intros v. destruct (decode v); eauto.
Qed.
Lemma dual_stype'_comm_eq st :
dual_stype (stype'_to_stype st) = stype'_to_stype (dual_stype' st).
Proof. Admitted.
Notation "⟦ c @ s : sτ ⟧{ γ }" := (interp_st N γ c s)
(at level 10, s at next level, at next level, γ at next level,
format "⟦ c @ s : sτ ⟧{ γ }").
Lemma new_chan_st_enc_spec st :
{{{ True }}}
new_chan #()
{{{ c γ, RET c; c @ Left : (stype'_to_stype st) {γ}
c @ Right : (stype'_to_stype (dual_stype' st)) {γ} }}}.
Proof.
iIntros (Φ _) "HΦ".
iApply (new_chan_st_spec). eauto.
iNext.
iIntros (c γ) "[Hl Hr]".
iApply "HΦ".
iFrame.
rewrite dual_stype'_comm_eq.
iFrame.
Qed.
Lemma send_st_enc_spec (A : Type) `{Encodable A} `{Decodable A} `{EncDec A}
st γ c s (P : A iProp Σ) v w :
decode v = Some w
{{{ P w c @ s : (stype'_to_stype (TSR' Send P st)) {γ} }}}
send c #s v
{{{ RET #(); c @ s : stype'_to_stype (st w) {γ} }}}.
Proof.
intros Henc.
iIntros (Φ) "[HP Hsend] HΦ".
iApply (send_st_spec with "[HP Hsend]").
simpl.
iFrame.
by destruct (decode v); inversion Henc.
iNext.
destruct (decode v); inversion Henc.
by iApply "HΦ".
Qed.
Lemma recv_st_enc_spec (A : Type) `{EncDec A}
st γ c s (P : A iProp Σ) :
{{{ c @ s : (stype'_to_stype (TSR' Receive P st)) {γ} }}}
recv c #s
{{{ v w, RET v; c @ s : stype'_to_stype (st w) {γ} P w
encode w = v }}}.
Proof.
iIntros (Φ) "Hrecv HΦ".
iApply (recv_st_spec with "Hrecv").
iNext. iIntros (v). iSpecialize ("HΦ" $!v).
iIntros "[H HP]".
iAssert (( w, decode v = Some w P w)%I) with "[HP]" as (w Hw) "HP".
destruct (decode v). iExists a. by iFrame. iDestruct "HP" as %HP=>//.
assert (encode w = v). by apply decenc.
destruct (decode v); inversion Hw.
iApply "HΦ".
iFrame.
iPureIntro. eauto.
Qed.
End Encodings.
\ No newline at end of file
From iris.proofmode Require Import tactics.
From iris.program_logic Require Export weakestpre.
From iris.heap_lang Require Import proofmode notation.
From osiris Require Import typing channel logrel.
From iris.algebra Require Import list auth excl.
From iris.base_logic Require Import invariants.
From osiris Require Import encodable.
Section Encodings_Examples.
Context `{!heapG Σ} {N : namespace}.
Context `{!logrelG val Σ}.
Definition seq_example : expr :=
(let: "c" := new_chan #() in
send "c" #Left #5;;
recv "c" #Right)%E.
Lemma seq_proof :
{{{ True }}} seq_example {{{ v, RET v; v = #5 }}}.
Proof.
iIntros (Φ H) "HΦ".
rewrite /seq_example.
wp_apply (new_chan_st_enc_spec N
(TSR' Send (λ v, v = 5⌝%I) (λ v, TEnd')))=> //.
iIntros (c γ) "[Hstl Hstr]"=> /=.
wp_apply (send_st_enc_spec N Z with "[Hstl]")=> //. by iFrame.
iIntros "Hstl".
wp_apply (recv_st_enc_spec N Z with "[Hstr]"). iFrame.
iIntros (v w) "[Hstr [HP Heq]]".
iApply "HΦ".
iDestruct "Heq" as %<-.
iDestruct "HP" as %->.
eauto.
Qed.
Definition par_2_example : expr :=
(let: "c" := new_chan #() in
Fork(let: "v" := recv "c" #Right in send "c" #Right ("v"+#4));;
send "c" #Left #5;;recv "c" #Left)%E.
Lemma par_2_proof :
{{{ True }}}
par_2_example
{{{ (v:Z), RET #v; 7 v }}}.
Proof.
iIntros (Φ H) "HΦ".
rewrite /par_2_example.
wp_apply (new_chan_st_enc_spec N
(TSR' Send
(λ v:Z, 5 v⌝%I)
(λ v:Z, TSR' Receive
(λ v':Z, v+2 v'⌝%I)
(λ v':Z, TEnd'))))=> //.
iIntros (c γ) "[Hstl Hstr]"=> /=.
wp_apply (wp_fork with "[Hstr]").
- iNext.
wp_apply (recv_st_enc_spec N Z with "[Hstr]"). by iFrame.
iIntros (v w) "[Hstr HP]".
iDestruct "HP" as %[HP <-].
wp_apply (send_st_enc_spec N Z with "[Hstr]")=> //.
iFrame; eauto 10 with iFrame.
iPureIntro. lia.
eauto.
- wp_apply (send_st_enc_spec N Z with "[Hstl]")=> //. by iFrame.
iIntros "Hstl".
wp_apply (recv_st_enc_spec N Z with "[Hstl]"). by iFrame.
iIntros (v w) "[Hstl HP]".
iDestruct "HP" as %[HP <-].
iApply "HΦ".
iPureIntro. lia.
Qed.
Definition heaplet_example : expr :=
(let: "c" := new_chan #() in
Fork(send "c" #Left (ref #5));;
!(recv "c" #Right))%E.
Lemma heaplet_proof :
{{{ True }}} heaplet_example {{{ v l, RET v; v = #5 l v }}}.
Proof.
iIntros (Φ H) "HΦ".
rewrite /heaplet_example.
wp_apply (new_chan_st_enc_spec N
(TSR' Send (λ v, (v #5)%I)
(λ v, TEnd')))=> //.
iIntros (c γ) "[Hstl Hstr]"=> /=.
wp_apply (wp_fork with "[Hstl]").
- iNext.
wp_apply (wp_alloc)=> //.
iIntros (l) "HP".
wp_apply (send_st_enc_spec N loc with "[Hstl HP]")=> //. by iFrame.
eauto.
- wp_apply (recv_st_enc_spec N loc with "[Hstr]"). iFrame.
iIntros (v w) "[Hstr HP]".
iDestruct "HP" as "[HP Henc]".
iDestruct "Henc" as %<-.
wp_load.
iApply "HΦ".
iFrame. eauto.
Qed.
Definition channel_example : expr :=
(let: "c" := new_chan #() in
Fork(
let: "c'" := new_chan #() in
send "c" #Left ("c'");; send "c'" #Left #5);;
let: "c'" := recv "c" #Right in
recv "c'" #Right
)%E.
Notation "⟦ c @ s : sτ ⟧{ γ }" := (interp_st N γ (stype'_to_stype ) c s)
(at level 10, s at next level, at next level, γ at next level,
format "⟦ c @ s : sτ ⟧{ γ }").
Lemma channel_proof :
{{{ True }}} channel_example {{{ v, RET v; v = #5 }}}.
Proof.
iIntros (Φ H) "HΦ".
rewrite /channel_example.
wp_apply (new_chan_st_enc_spec N
(TSR' Send (λ v, γ, v @ Right :
(TSR' Receive
(λ v, v = 5)
(λ _, TEnd')) {γ})%I
(λ v, TEnd')))=> //.
iIntros (c γ) "[Hstl Hstr]"=> /=.
wp_pures.
wp_apply (wp_fork with "[Hstl]").
- iNext.
wp_apply (new_chan_st_enc_spec N
(TSR' Send (λ v, v = 5⌝%I) (λ v, TEnd')))=> //.
iIntros (c' γ') "[Hstl' Hstr']"=> /=.
wp_apply (send_st_enc_spec N val with "[Hstl Hstr']")=> //.
iFrame. iExists γ'. iFrame.
iIntros "Hstl".
wp_apply (send_st_enc_spec N Z with "[Hstl']")=> //.
iFrame. eauto. eauto.
- wp_apply (recv_st_enc_spec N val with "[Hstr]")=> //.
iIntros (v w) "[Hstr [Hstr' Henc]]".
iDestruct "Henc" as %<-.
iDestruct "Hstr'" as (γ') "Hstr'".
wp_apply (recv_st_enc_spec N Z with "[Hstr']")=> //.
iIntros (v' w') "[Hstr' [HP Henc]]".
iDestruct "Henc" as %<-.
iDestruct "HP" as %<-.
by iApply "HΦ".
Qed.
End Encodings_Examples.
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment