Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
Actris
Commits
e05d2403
Commit
e05d2403
authored
5 years ago
by
Jonas Kastberg Hinrichsen
Browse files
Options
Downloads
Patches
Plain Diff
Introduced encoded session types
parent
1b3eb3df
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
_CoqProject
+1
-0
1 addition, 0 deletions
_CoqProject
theories/encodable.v
+195
-0
195 additions, 0 deletions
theories/encodable.v
theories/encodings_examples.v
+149
-0
149 additions, 0 deletions
theories/encodings_examples.v
with
345 additions
and
0 deletions
_CoqProject
+
1
−
0
View file @
e05d2403
...
@@ -5,3 +5,4 @@ theories/auth_excl.v
...
@@ -5,3 +5,4 @@ theories/auth_excl.v
theories/typing.v
theories/typing.v
theories/channel.v
theories/channel.v
theories/logrel.v
theories/logrel.v
theories/encodable.v
This diff is collapsed.
Click to expand it.
theories/encodable.v
0 → 100644
+
195
−
0
View file @
e05d2403
From
iris
.
proofmode
Require
Import
tactics
.
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
osiris
Require
Import
typing
channel
logrel
.
From
iris
.
algebra
Require
Import
list
auth
excl
.
From
iris
.
base_logic
Require
Import
invariants
.
Class
Encodable
A
:=
encode
:
A
->
val
.
Instance
val_encodable
:
Encodable
val
:=
id
.
Instance
int_encodable
:
Encodable
Z
:=
λ
n
,
#
n
.
Instance
bool_encodable
:
Encodable
bool
:=
λ
b
,
#
b
.
Instance
unit_encodable
:
Encodable
unit
:=
λ
_,
#
()
.
Instance
loc_encodable
:
Encodable
loc
:=
λ
l
,
#
l
.
Class
Decodable
A
:=
decode
:
val
->
option
A
.
Instance
val_decodable
:
Decodable
val
:=
id
$
Some
.
Instance
int_decodable
:
Decodable
Z
:=
λ
v
,
match
v
with
|
LitV
(
LitInt
z
)
=>
Some
z
|
_
=>
None
end
.
Instance
bool_decodable
:
Decodable
bool
:=
λ
v
,
match
v
with
|
LitV
(
LitBool
b
)
=>
Some
b
|
_
=>
None
end
.
Instance
loc_decodable
:
Decodable
loc
:=
λ
v
,
match
v
with
|
LitV
(
LitLoc
l
)
=>
Some
l
|
_
=>
None
end
.
Class
EncDec
(
A
:
Type
)
{
EA
:
Encodable
A
}
{
DA
:
Decodable
A
}
:=
{
encdec
:
∀
v
,
decode
(
encode
v
)
=
Some
v
;
decenc
:
∀
(
v
:
val
)
(
w
:
A
)
,
decode
v
=
Some
w
->
encode
w
=
v
}
.
Ltac
solve_encdec
:=
intros
v
;
by
unfold
decode
,
encode
.
Ltac
solve_decenc
:=
intros
v
w
H
;
destruct
v
as
[
l
|
|
|
|
];
try
by
inversion
H
;
destruct
l
;
try
by
inversion
H
.
Ltac
solve_encdec_decenc
:=
split
;
[
solve_encdec
|
solve_decenc
]
.
Instance
val_encdec
:
EncDec
val
.
Proof
.
split
.
-
intros
v
.
unfold
decode
,
encode
.
eauto
.
-
intros
v
w
H
.
by
destruct
v
;
inversion
H
.
Qed
.
Instance
int_encdec
:
EncDec
Z
.
Proof
.
solve_encdec_decenc
.
Qed
.
Instance
bool_encdec
:
EncDec
bool
.
Proof
.
solve_encdec_decenc
.
Qed
.
Instance
loc_encdec
:
EncDec
loc
.
Proof
.
solve_encdec_decenc
.
Qed
.
Lemma
enc_dec
{
A
:
Type
}
`{
ED
:
EncDec
A
}
v
(
w
:
A
)
:
encode
w
=
v
<->
decode
v
=
Some
w
.
Proof
.
split
.
-
intros
.
rewrite
-
encdec
.
rewrite
-
H
.
reflexivity
.
-
intros
.
apply
decenc
.
eauto
.
Qed
.
Inductive
stype'
(
A
:
Type
)
:=
|
TEnd'
|
TSR'
{
V
:
Type
}
{
EV
:
Encodable
V
}
{
DV
:
Decodable
V
}
(
a
:
action
)
(
P
:
V
→
A
)
(
st
:
V
→
stype'
A
)
.
Arguments
TEnd'
{_}
.
Arguments
TSR'
{_
_
_
_}
_
_
_
.
Instance
:
Params
(
@
TSR'
)
4
.
Fixpoint
dual_stype'
{
A
}
(
st
:
stype'
A
)
:=
match
st
with
|
TEnd'
=>
TEnd'
|
TSR'
a
P
st
=>
TSR'
(
dual_action
a
)
P
(
λ
v
,
dual_stype'
(
st
v
))
end
.
Instance
:
Params
(
@
dual_stype'
)
2
.
Arguments
dual_stype
:
simpl
never
.
Section
Encodings
.
Context
`{
!
heapG
Σ
}
(
N
:
namespace
)
.
Context
`{
!
logrelG
val
Σ
}
.
Example
ex_st
:
stype'
(
iProp
Σ
)
:=
(
TSR'
Receive
(
λ
v'
,
⌜
v'
=
5
⌝%
I
)
(
λ
v'
,
TEnd'
))
.
Example
ex_st2
:
stype'
(
iProp
Σ
)
:=
TSR'
Send
(
λ
b
,
⌜
b
=
true
⌝%
I
)
(
λ
b
,
(
TSR'
Receive
(
λ
v'
,
⌜
(
v'
>
5
)
=
b
⌝%
I
)
(
λ
_,
TEnd'
)))
.
Fixpoint
stype'_to_stype
(
st
:
stype'
(
iProp
Σ
))
:
stype
val
(
iProp
Σ
)
:=
match
st
with
|
TEnd'
=>
TEnd
|
TSR'
a
P
st
=>
TSR
a
(
λ
v
,
match
decode
v
with
|
Some
v
=>
P
v
|
None
=>
False
end
%
I
)
(
λ
v
,
match
decode
v
with
|
Some
v
=>
stype'_to_stype
(
st
v
)
|
None
=>
TEnd
end
)
end
.
Global
Instance
:
Params
(
@
stype'_to_stype
)
1
.
Global
Arguments
stype'_to_stype
:
simpl
never
.
Lemma
dual_stype'_comm
st
:
dual_stype
(
stype'_to_stype
st
)
≡
stype'_to_stype
(
dual_stype'
st
)
.
Proof
.
induction
st
.
-
by
simpl
.
-
unfold
stype'_to_stype
.
simpl
.
constructor
.
+
intros
v
.
eauto
.
+
intros
v
.
destruct
(
decode
v
);
eauto
.
Qed
.
Lemma
dual_stype'_comm_eq
st
:
dual_stype
(
stype'_to_stype
st
)
=
stype'_to_stype
(
dual_stype'
st
)
.
Proof
.
Admitted
.
Notation
"⟦ c @ s : sτ ⟧{ γ }"
:=
(
interp_st
N
γ
sτ
c
s
)
(
at
level
10
,
s
at
next
level
,
sτ
at
next
level
,
γ
at
next
level
,
format
"⟦ c @ s : sτ ⟧{ γ }"
)
.
Lemma
new_chan_st_enc_spec
st
:
{{{
True
}}}
new_chan
#
()
{{{
c
γ
,
RET
c
;
⟦
c
@
Left
:
(
stype'_to_stype
st
)
⟧
{
γ
}
∗
⟦
c
@
Right
:
(
stype'_to_stype
(
dual_stype'
st
))
⟧
{
γ
}
}}}
.
Proof
.
iIntros
(
Φ
_)
"HΦ"
.
iApply
(
new_chan_st_spec
)
.
eauto
.
iNext
.
iIntros
(
c
γ
)
"[Hl Hr]"
.
iApply
"HΦ"
.
iFrame
.
rewrite
dual_stype'_comm_eq
.
iFrame
.
Qed
.
Lemma
send_st_enc_spec
(
A
:
Type
)
`{
Encodable
A
}
`{
Decodable
A
}
`{
EncDec
A
}
st
γ
c
s
(
P
:
A
→
iProp
Σ
)
v
w
:
decode
v
=
Some
w
→
{{{
P
w
∗
⟦
c
@
s
:
(
stype'_to_stype
(
TSR'
Send
P
st
))
⟧
{
γ
}
}}}
send
c
#
s
v
{{{
RET
#
();
⟦
c
@
s
:
stype'_to_stype
(
st
w
)
⟧
{
γ
}
}}}
.
Proof
.
intros
Henc
.
iIntros
(
Φ
)
"[HP Hsend] HΦ"
.
iApply
(
send_st_spec
with
"[HP Hsend]"
)
.
simpl
.
iFrame
.
by
destruct
(
decode
v
);
inversion
Henc
.
iNext
.
destruct
(
decode
v
);
inversion
Henc
.
by
iApply
"HΦ"
.
Qed
.
Lemma
recv_st_enc_spec
(
A
:
Type
)
`{
EncDec
A
}
st
γ
c
s
(
P
:
A
→
iProp
Σ
)
:
{{{
⟦
c
@
s
:
(
stype'_to_stype
(
TSR'
Receive
P
st
))
⟧
{
γ
}
}}}
recv
c
#
s
{{{
v
w
,
RET
v
;
⟦
c
@
s
:
stype'_to_stype
(
st
w
)
⟧
{
γ
}
∗
P
w
∗
⌜
encode
w
=
v
⌝
}}}
.
Proof
.
iIntros
(
Φ
)
"Hrecv HΦ"
.
iApply
(
recv_st_spec
with
"Hrecv"
)
.
iNext
.
iIntros
(
v
)
.
iSpecialize
(
"HΦ"
$!
v
)
.
iIntros
"[H HP]"
.
iAssert
((
∃
w
,
⌜
decode
v
=
Some
w
⌝
∗
P
w
)
%
I
)
with
"[HP]"
as
(
w
Hw
)
"HP"
.
destruct
(
decode
v
)
.
iExists
a
.
by
iFrame
.
iDestruct
"HP"
as
%
HP
=>
//.
assert
(
encode
w
=
v
)
.
by
apply
decenc
.
destruct
(
decode
v
);
inversion
Hw
.
iApply
"HΦ"
.
iFrame
.
iPureIntro
.
eauto
.
Qed
.
End
Encodings
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
theories/encodings_examples.v
0 → 100644
+
149
−
0
View file @
e05d2403
From
iris
.
proofmode
Require
Import
tactics
.
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
osiris
Require
Import
typing
channel
logrel
.
From
iris
.
algebra
Require
Import
list
auth
excl
.
From
iris
.
base_logic
Require
Import
invariants
.
From
osiris
Require
Import
encodable
.
Section
Encodings_Examples
.
Context
`{
!
heapG
Σ
}
{
N
:
namespace
}
.
Context
`{
!
logrelG
val
Σ
}
.
Definition
seq_example
:
expr
:=
(
let
:
"c"
:=
new_chan
#
()
in
send
"c"
#
Left
#
5
;;
recv
"c"
#
Right
)
%
E
.
Lemma
seq_proof
:
{{{
True
}}}
seq_example
{{{
v
,
RET
v
;
⌜
v
=
#
5
⌝
}}}
.
Proof
.
iIntros
(
Φ
H
)
"HΦ"
.
rewrite
/
seq_example
.
wp_apply
(
new_chan_st_enc_spec
N
(
TSR'
Send
(
λ
v
,
⌜
v
=
5
⌝%
I
)
(
λ
v
,
TEnd'
)))=>
//.
iIntros
(
c
γ
)
"[Hstl Hstr]"
=>
/=.
wp_apply
(
send_st_enc_spec
N
Z
with
"[Hstl]"
)=>
//.
by
iFrame
.
iIntros
"Hstl"
.
wp_apply
(
recv_st_enc_spec
N
Z
with
"[Hstr]"
)
.
iFrame
.
iIntros
(
v
w
)
"[Hstr [HP Heq]]"
.
iApply
"HΦ"
.
iDestruct
"Heq"
as
%<-.
iDestruct
"HP"
as
%->
.
eauto
.
Qed
.
Definition
par_2_example
:
expr
:=
(
let
:
"c"
:=
new_chan
#
()
in
Fork
(
let
:
"v"
:=
recv
"c"
#
Right
in
send
"c"
#
Right
(
"v"
+#
4
));;
send
"c"
#
Left
#
5
;;
recv
"c"
#
Left
)
%
E
.
Lemma
par_2_proof
:
{{{
True
}}}
par_2_example
{{{
(
v
:
Z
),
RET
#
v
;
⌜
7
≤
v
⌝
}}}
.
Proof
.
iIntros
(
Φ
H
)
"HΦ"
.
rewrite
/
par_2_example
.
wp_apply
(
new_chan_st_enc_spec
N
(
TSR'
Send
(
λ
v
:
Z
,
⌜
5
≤
v
⌝%
I
)
(
λ
v
:
Z
,
TSR'
Receive
(
λ
v'
:
Z
,
⌜
v
+
2
≤
v'
⌝%
I
)
(
λ
v'
:
Z
,
TEnd'
))))=>
//.
iIntros
(
c
γ
)
"[Hstl Hstr]"
=>
/=.
wp_apply
(
wp_fork
with
"[Hstr]"
)
.
-
iNext
.
wp_apply
(
recv_st_enc_spec
N
Z
with
"[Hstr]"
)
.
by
iFrame
.
iIntros
(
v
w
)
"[Hstr HP]"
.
iDestruct
"HP"
as
%
[
HP
<-
]
.
wp_apply
(
send_st_enc_spec
N
Z
with
"[Hstr]"
)=>
//.
iFrame
;
eauto
10
with
iFrame
.
iPureIntro
.
lia
.
eauto
.
-
wp_apply
(
send_st_enc_spec
N
Z
with
"[Hstl]"
)=>
//.
by
iFrame
.
iIntros
"Hstl"
.
wp_apply
(
recv_st_enc_spec
N
Z
with
"[Hstl]"
)
.
by
iFrame
.
iIntros
(
v
w
)
"[Hstl HP]"
.
iDestruct
"HP"
as
%
[
HP
<-
]
.
iApply
"HΦ"
.
iPureIntro
.
lia
.
Qed
.
Definition
heaplet_example
:
expr
:=
(
let
:
"c"
:=
new_chan
#
()
in
Fork
(
send
"c"
#
Left
(
ref
#
5
));;
!
(
recv
"c"
#
Right
))
%
E
.
Lemma
heaplet_proof
:
{{{
True
}}}
heaplet_example
{{{
v
l
,
RET
v
;
⌜
v
=
#
5
⌝
∗
l
↦
v
}}}
.
Proof
.
iIntros
(
Φ
H
)
"HΦ"
.
rewrite
/
heaplet_example
.
wp_apply
(
new_chan_st_enc_spec
N
(
TSR'
Send
(
λ
v
,
(
v
↦
#
5
)
%
I
)
(
λ
v
,
TEnd'
)))=>
//.
iIntros
(
c
γ
)
"[Hstl Hstr]"
=>
/=.
wp_apply
(
wp_fork
with
"[Hstl]"
)
.
-
iNext
.
wp_apply
(
wp_alloc
)=>
//.
iIntros
(
l
)
"HP"
.
wp_apply
(
send_st_enc_spec
N
loc
with
"[Hstl HP]"
)=>
//.
by
iFrame
.
eauto
.
-
wp_apply
(
recv_st_enc_spec
N
loc
with
"[Hstr]"
)
.
iFrame
.
iIntros
(
v
w
)
"[Hstr HP]"
.
iDestruct
"HP"
as
"[HP Henc]"
.
iDestruct
"Henc"
as
%<-.
wp_load
.
iApply
"HΦ"
.
iFrame
.
eauto
.
Qed
.
Definition
channel_example
:
expr
:=
(
let
:
"c"
:=
new_chan
#
()
in
Fork
(
let
:
"c'"
:=
new_chan
#
()
in
send
"c"
#
Left
(
"c'"
);;
send
"c'"
#
Left
#
5
);;
let
:
"c'"
:=
recv
"c"
#
Right
in
recv
"c'"
#
Right
)
%
E
.
Notation
"⟦ c @ s : sτ ⟧{ γ }"
:=
(
interp_st
N
γ
(
stype'_to_stype
sτ
)
c
s
)
(
at
level
10
,
s
at
next
level
,
sτ
at
next
level
,
γ
at
next
level
,
format
"⟦ c @ s : sτ ⟧{ γ }"
)
.
Lemma
channel_proof
:
{{{
True
}}}
channel_example
{{{
v
,
RET
v
;
⌜
v
=
#
5
⌝
}}}
.
Proof
.
iIntros
(
Φ
H
)
"HΦ"
.
rewrite
/
channel_example
.
wp_apply
(
new_chan_st_enc_spec
N
(
TSR'
Send
(
λ
v
,
∃
γ
,
⟦
v
@
Right
:
(
TSR'
Receive
(
λ
v
,
⌜
v
=
5
⌝
)
(
λ
_,
TEnd'
))
⟧
{
γ
})
%
I
(
λ
v
,
TEnd'
)))=>
//.
iIntros
(
c
γ
)
"[Hstl Hstr]"
=>
/=.
wp_pures
.
wp_apply
(
wp_fork
with
"[Hstl]"
)
.
-
iNext
.
wp_apply
(
new_chan_st_enc_spec
N
(
TSR'
Send
(
λ
v
,
⌜
v
=
5
⌝%
I
)
(
λ
v
,
TEnd'
)))=>
//.
iIntros
(
c'
γ'
)
"[Hstl' Hstr']"
=>
/=.
wp_apply
(
send_st_enc_spec
N
val
with
"[Hstl Hstr']"
)=>
//.
iFrame
.
iExists
γ'
.
iFrame
.
iIntros
"Hstl"
.
wp_apply
(
send_st_enc_spec
N
Z
with
"[Hstl']"
)=>
//.
iFrame
.
eauto
.
eauto
.
-
wp_apply
(
recv_st_enc_spec
N
val
with
"[Hstr]"
)=>
//.
iIntros
(
v
w
)
"[Hstr [Hstr' Henc]]"
.
iDestruct
"Henc"
as
%<-.
iDestruct
"Hstr'"
as
(
γ'
)
"Hstr'"
.
wp_apply
(
recv_st_enc_spec
N
Z
with
"[Hstr']"
)=>
//.
iIntros
(
v'
w'
)
"[Hstr' [HP Henc]]"
.
iDestruct
"Henc"
as
%<-.
iDestruct
"HP"
as
%<-.
by
iApply
"HΦ"
.
Qed
.
End
Encodings_Examples
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment