Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
Actris
Commits
8e968ab2
Commit
8e968ab2
authored
11 months ago
by
Jonas Kastberg
Browse files
Options
Downloads
Patches
Plain Diff
Added delegation variant of leader election
parent
9b32c5b0
No related branches found
No related tags found
1 merge request
!39
Multiparty synchronous
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
multi_actris/examples/leader_election_del.v
+277
-0
277 additions, 0 deletions
multi_actris/examples/leader_election_del.v
with
277 additions
and
0 deletions
multi_actris/examples/leader_election_del.v
0 → 100644
+
277
−
0
View file @
8e968ab2
From
iris
.
heap_lang
Require
Import
adequacy
.
From
iris
.
heap_lang
.
lib
Require
Import
assert
.
From
multi_actris
.
channel
Require
Import
proofmode
.
(** Inspired by https://en.wikipedia.org/wiki/Chang_and_Roberts_algorithm *)
Definition
process
:
val
:=
rec
:
"go"
"c"
"idl"
"id"
"idr"
"isp"
:=
if
:
recv
"c"
"idr"
then
let
:
"id'"
:=
recv
"c"
"idr"
in
if
:
"id"
<
"id'"
(** Case 1 *)
then
send
"c"
"idl"
#
true
;;
send
"c"
"idl"
"id'"
;;
"go"
"c"
"idl"
"id"
"idr"
#
true
else
if
:
"id"
=
"id'"
(** Case 4 *)
then
send
"c"
"idl"
#
false
;;
send
"c"
"idl"
"id"
;;
"go"
"c"
"idl"
"id"
"idr"
#
false
else
if
:
"isp"
(** Case 3 *)
then
"go"
"c"
"idl"
"id"
"idr"
"isp"
(** Case 2 *)
else
send
"c"
"idl"
#
true
;;
send
"c"
"idl"
"id"
;;
"go"
"c"
"idl"
"id"
"idr"
#
true
else
let
:
"id'"
:=
recv
"c"
"idr"
in
if
:
"id"
=
"id'"
then
"id'"
else
send
"c"
"idl"
#
false
;;
send
"c"
"idl"
"id'"
;;
"id'"
.
Definition
init
:
val
:=
λ
:
"c"
"idl"
"id"
"idr"
,
(* Notice missing leader *)
send
"c"
"idl"
#
true
;;
send
"c"
"idl"
"id"
;;
process
"c"
"idl"
"id"
"idr"
#
true
.
Definition
forward
:
val
:=
λ
:
"c"
"idl"
"id"
"idr"
"id_max"
,
if
:
"id"
=
"id_max"
then
let
:
"cs'"
:=
new_chan
#
2
in
let
:
"c0"
:=
get_chan
"cs'"
#
0
in
let
:
"c1"
:=
get_chan
"cs'"
#
1
in
send
"c1"
#
0
"id_max"
;;
send
"c"
"idl"
"c1"
;;
Fork
((
rec
:
"f"
<>
:=
let
:
"id'"
:=
recv
"c0"
#
1
in
assert
:
(
"id'"
=
"id_max"
);;
"f"
#
())
#
());;
recv
"c"
"idr"
;;
#
()
else
let
:
"c1"
:=
recv
"c"
"idr"
in
send
"c1"
#
0
"id_max"
;;
send
"c"
"idl"
"c1"
.
Definition
program
:
val
:=
λ
:
<>
,
let
:
"cs"
:=
new_chan
#
4
in
let
:
"c0"
:=
get_chan
"cs"
#
0
in
let
:
"c1"
:=
get_chan
"cs"
#
1
in
let
:
"c2"
:=
get_chan
"cs"
#
2
in
let
:
"c3"
:=
get_chan
"cs"
#
3
in
Fork
(
let
:
"id_max"
:=
process
"c1"
#
0
#
1
#
2
#
false
in
forward
"c1"
#
0
#
1
#
2
"id_max"
);;
Fork
(
let
:
"id_max"
:=
process
"c2"
#
1
#
2
#
3
#
false
in
forward
"c2"
#
1
#
2
#
3
"id_max"
);;
Fork
(
let
:
"id_max"
:=
process
"c3"
#
2
#
3
#
0
#
false
in
forward
"c3"
#
2
#
3
#
0
"id_max"
);;
let
:
"id_max"
:=
init
"c0"
#
3
#
0
#
1
in
forward
"c0"
#
3
#
0
#
1
"id_max"
.
Notation
iProto_choice
a
p1
p2
:=
(
<
a
@
(
b
:
bool
)
>
MSG
#
b
;
if
b
then
p1
else
p2
)
%
proto
.
Section
ring_leader_election_example
.
Context
`{
!
heapGS
Σ
,
chanG
Σ
,
spawnG
Σ
,
mono_natG
Σ
}
.
Definition
my_recv_prot
(
il
i
ir
:
nat
)
(
p
:
nat
→
iProto
Σ
)
(
rec
:
bool
-
d
>
iProto
Σ
)
:
bool
-
d
>
iProto
Σ
:=
λ
(
isp
:
bool
),
iProto_choice
(
Recv
,
ir
)
(
<
(
Recv
,
ir
)
@
(
i'
:
nat
)
>
MSG
#
i'
;
if
bool_decide
(
i
<
i'
)
then
<
(
Send
,
il
)
>
MSG
#
true
;
<
(
Send
,
il
)
>
MSG
#
i'
;
rec
true
else
if
bool_decide
(
i
=
i'
)
then
<
(
Send
,
il
)
>
MSG
#
false
;
<
(
Send
,
il
)
>
MSG
#
i
;
rec
false
else
if
isp
then
rec
isp
else
<
(
Send
,
il
)
>
MSG
#
true
;
<
(
Send
,
il
)
>
MSG
#
i
;
rec
true
)
%
proto
(
<
(
Recv
,
ir
)
@
(
i'
:
nat
)
>
MSG
#
i'
;
if
(
bool_decide
(
i
=
i'
))
then
p
i
else
<
(
Send
,
il
)
>
MSG
#
false
;
<
(
Send
,
il
)
>
MSG
#
i'
;
p
i'
)
%
proto
.
Instance
rle_prot_aux_contractive
il
i
ir
p
:
Contractive
(
my_recv_prot
il
i
ir
p
)
.
Proof
.
rewrite
/
my_recv_prot
.
solve_proto_contractive
.
Qed
.
Definition
rle_prot
il
i
ir
p
:=
fixpoint
(
my_recv_prot
il
i
ir
p
)
.
Instance
rle_prot_unfold
il
i
ir
isp
p
:
ProtoUnfold
(
rle_prot
il
i
ir
p
isp
)
(
my_recv_prot
il
i
ir
p
(
rle_prot
il
i
ir
p
)
isp
)
.
Proof
.
apply
proto_unfold_eq
,
(
fixpoint_unfold
(
my_recv_prot
il
i
ir
p
))
.
Qed
.
Lemma
rle_prot_unfold'
il
i
ir
isp
p
:
(
rle_prot
il
i
ir
p
isp
)
≡
(
my_recv_prot
il
i
ir
p
(
rle_prot
il
i
ir
p
)
isp
)
.
Proof
.
apply
(
fixpoint_unfold
(
my_recv_prot
il
i
ir
p
))
.
Qed
.
Definition
rle_preprot
(
il
i
ir
:
nat
)
p
:
iProto
Σ
:=
(
<
(
Send
,
il
)
>
MSG
#
true
;
<
(
Send
,
il
)
>
MSG
#
i
;
rle_prot
il
i
ir
p
true
)
%
proto
.
Lemma
process_spec
il
i
ir
p
c
(
isp
:
bool
)
:
{{{
c
↣
(
rle_prot
il
i
ir
p
isp
)
}}}
process
c
#
il
#
i
#
ir
#
isp
{{{
i'
,
RET
#
i'
;
c
↣
p
i'
}}}
.
Proof
.
iIntros
(
Φ
)
"Hc HΦ"
.
iLöb
as
"IH"
forall
(
Φ
isp
)
.
wp_lam
.
wp_recv
(
b
)
as
"_"
.
destruct
b
.
-
wp_pures
.
wp_recv
(
i'
)
as
"_"
.
wp_pures
.
case_bool_decide
as
Hlt
.
{
case_bool_decide
;
[|
lia
]
.
wp_pures
.
wp_send
with
"[//]"
.
wp_send
with
"[//]"
.
wp_pures
.
iApply
(
"IH"
with
"Hc HΦ"
)
.
}
case_bool_decide
as
Hlt2
.
{
case_bool_decide
;
[
lia
|]
.
wp_pures
.
case_bool_decide
;
[|
simplify_eq
;
lia
]
.
wp_send
with
"[//]"
.
wp_send
with
"[//]"
.
wp_pures
.
iApply
(
"IH"
with
"Hc HΦ"
)
.
}
case_bool_decide
;
[
lia
|]
.
wp_pures
.
case_bool_decide
;
[
simplify_eq
;
lia
|]
.
wp_pures
.
destruct
isp
.
{
wp_pures
.
iApply
(
"IH"
with
"Hc HΦ"
)
.
}
wp_pures
.
wp_send
with
"[//]"
.
wp_send
with
"[//]"
.
wp_pures
.
iApply
(
"IH"
with
"Hc HΦ"
)
.
-
wp_pures
.
wp_recv
(
id'
)
as
"_"
.
wp_pures
.
case_bool_decide
as
Hlt
.
{
case_bool_decide
;
[|
simplify_eq
;
lia
]
.
wp_pures
.
subst
.
by
iApply
"HΦ"
.
}
case_bool_decide
;
[
simplify_eq
;
lia
|]
.
wp_send
with
"[//]"
.
wp_send
with
"[//]"
.
wp_pures
.
by
iApply
"HΦ"
.
Qed
.
Lemma
init_spec
c
il
i
ir
p
:
{{{
c
↣
rle_preprot
il
i
ir
p
}}}
init
c
#
il
#
i
#
ir
{{{
res
,
RET
#
res
;
c
↣
p
res
}}}
.
Proof
.
iIntros
(
Φ
)
"Hc HΦ"
.
wp_lam
.
wp_send
with
"[//]"
.
wp_send
with
"[//]"
.
wp_pures
.
by
iApply
(
process_spec
with
"Hc HΦ"
)
.
Qed
.
Definition
forward_prot
(
p
:
iProto
Σ
)
(
il
i
ir
i_max
:
nat
)
:
iProto
Σ
:=
if
bool_decide
(
i
=
i_max
)
then
(
<
(
Send
,
il
)
@
(
c
:
val
)
>
MSG
c
{{
c
↣
p
}}
;
<
(
Recv
,
ir
)
>
MSG
c
{{
c
↣
p
}};
END
)
%
proto
else
(
<
(
Recv
,
ir
)
@
(
c
:
val
)
>
MSG
c
{{
c
↣
p
}}
;
<
(
Send
,
il
)
>
MSG
c
{{
c
↣
p
}};
END
)
%
proto
.
Definition
relay_send_aux
(
id
:
nat
)
(
rec
:
iProto
Σ
)
:
iProto
Σ
:=
(
<
(
Send
,
0
)
>
MSG
#
id
;
rec
)
%
proto
.
Instance
relay_send_aux_contractive
i
:
Contractive
(
relay_send_aux
i
)
.
Proof
.
solve_proto_contractive
.
Qed
.
Definition
relay_send_prot
i
:=
fixpoint
(
relay_send_aux
i
)
.
Instance
relay_send_prot_unfold
i
:
ProtoUnfold
(
relay_send_prot
i
)
(
relay_send_aux
i
(
relay_send_prot
i
))
.
Proof
.
apply
proto_unfold_eq
,
(
fixpoint_unfold
(
relay_send_aux
i
))
.
Qed
.
Lemma
relay_send_prot_unfold'
i
:
(
relay_send_prot
i
)
≡
(
relay_send_aux
i
(
relay_send_prot
i
))
.
Proof
.
apply
(
fixpoint_unfold
(
relay_send_aux
i
))
.
Qed
.
Definition
relay_recv_aux
(
id
:
nat
)
(
rec
:
iProto
Σ
)
:
iProto
Σ
:=
(
<
(
Recv
,
1
)
>
MSG
#
id
;
rec
)
%
proto
.
Instance
relay_recv_aux_contractive
i
:
Contractive
(
relay_recv_aux
i
)
.
Proof
.
solve_proto_contractive
.
Qed
.
Definition
relay_recv_prot
i
:=
fixpoint
(
relay_recv_aux
i
)
.
Instance
relay_recv_prot_unfold
i
:
ProtoUnfold
(
relay_recv_prot
i
)
(
relay_recv_aux
i
(
relay_recv_prot
i
))
.
Proof
.
apply
proto_unfold_eq
,
(
fixpoint_unfold
(
relay_recv_aux
i
))
.
Qed
.
Lemma
relay_recv_prot_unfold'
i
:
(
relay_recv_prot
i
)
≡
(
relay_recv_aux
i
(
relay_recv_prot
i
))
.
Proof
.
apply
(
fixpoint_unfold
(
relay_recv_aux
i
))
.
Qed
.
Definition
prot_pool
:
list
(
iProto
Σ
)
:=
[
rle_preprot
3
0
1
(
λ
id_max
,
forward_prot
(
relay_send_prot
id_max
)
3
0
1
id_max
);
rle_prot
0
1
2
(
λ
id_max
,
forward_prot
(
relay_send_prot
id_max
)
0
1
2
id_max
)
false
;
rle_prot
1
2
3
(
λ
id_max
,
forward_prot
(
relay_send_prot
id_max
)
1
2
3
id_max
)
false
;
rle_prot
2
3
0
(
λ
id_max
,
forward_prot
(
relay_send_prot
id_max
)
2
3
0
id_max
)
false
]
.
Lemma
prot_pool_consistent
:
⊢
iProto_consistent
prot_pool
.
Proof
.
rewrite
/
prot_pool
/
rle_preprot
.
rewrite
!
rle_prot_unfold'
.
iProto_consistent_take_steps
.
case_bool_decide
;
try
lia
.
rewrite
!
rle_prot_unfold'
.
iProto_consistent_take_steps
.
case_bool_decide
;
try
lia
.
rewrite
!
rle_prot_unfold'
.
iProto_consistent_take_steps
.
case_bool_decide
;
try
lia
.
rewrite
!
rle_prot_unfold'
.
iProto_consistent_take_steps
.
Qed
.
Definition
prot_pool'
(
i
:
nat
)
:
list
(
iProto
Σ
)
:=
[
relay_recv_prot
i
;
relay_send_prot
i
]
.
Lemma
prot_pool_consistent'
i
:
⊢
iProto_consistent
(
prot_pool'
i
)
.
Proof
.
rewrite
/
prot_pool'
.
iLöb
as
"IH"
.
iEval
(
rewrite
relay_recv_prot_unfold'
)
.
iEval
(
rewrite
relay_send_prot_unfold'
)
.
iProto_consistent_take_steps
.
done
.
Qed
.
Lemma
forward_spec
c
il
i
ir
i_max
:
{{{
c
↣
forward_prot
(
relay_send_prot
i_max
)
il
i
ir
i_max
}}}
forward
c
#
il
#
i
#
ir
#
i_max
{{{
RET
#
();
True
}}}
.
Proof
.
iIntros
(
Φ
)
"Hc HΦ"
.
wp_lam
.
rewrite
/
forward_prot
.
wp_pures
.
case_bool_decide
.
-
simplify_eq
.
wp_pures
.
case_bool_decide
;
[|
simplify_eq
;
lia
]
.
wp_new_chan
(
prot_pool'
i_max
)
with
(
prot_pool_consistent'
i_max
)
as
(
c0
c1
)
"Hc0"
"Hc1"
.
wp_send
with
"[//]"
.
wp_send
with
"[Hc1//]"
.
wp_smart_apply
(
wp_fork
with
"[Hc0]"
)
.
{
iIntros
"!>"
.
wp_pures
.
iLöb
as
"IH"
.
wp_recv
as
"_"
.
wp_smart_apply
wp_assert
.
wp_pures
.
iModIntro
.
iSplit
;
[
iPureIntro
;
f_equiv
;
by
case_bool_decide
|]
.
iIntros
"!>"
.
wp_pures
.
by
iApply
"IH"
.
}
wp_recv
as
"Hc'"
.
wp_pures
.
by
iApply
"HΦ"
.
-
case_bool_decide
;
[
simplify_eq
;
lia
|]
.
wp_pures
.
wp_recv
(
c'
)
as
"Hc'"
.
wp_send
with
"[//]"
.
wp_send
with
"[Hc'//]"
.
by
iApply
"HΦ"
.
Qed
.
Lemma
program_spec
:
{{{
True
}}}
program
#
()
{{{
RET
#
();
True
}}}
.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_new_chan
prot_pool
with
prot_pool_consistent
as
(
c0
c1
c2
c3
)
"Hc0"
"Hc1"
"Hc2"
"Hc3"
.
wp_smart_apply
(
wp_fork
with
"[Hc1]"
)
.
{
iIntros
"!>"
.
wp_smart_apply
(
process_spec
with
"Hc1"
)
.
iIntros
(
i'
)
"Hc1"
.
by
wp_smart_apply
(
forward_spec
with
"Hc1"
)
.
}
wp_smart_apply
(
wp_fork
with
"[Hc2]"
)
.
{
iIntros
"!>"
.
wp_smart_apply
(
process_spec
with
"Hc2"
)
.
iIntros
(
i'
)
"Hc2"
.
by
wp_smart_apply
(
forward_spec
with
"Hc2"
)
.
}
wp_smart_apply
(
wp_fork
with
"[Hc3]"
)
.
{
iIntros
"!>"
.
wp_smart_apply
(
process_spec
with
"Hc3"
)
.
iIntros
(
i'
)
"Hc3"
.
by
wp_smart_apply
(
forward_spec
with
"Hc3"
)
.
}
wp_smart_apply
(
init_spec
with
"Hc0"
)
.
iIntros
(
i'
)
"Hc0"
.
by
wp_smart_apply
(
forward_spec
with
"Hc0"
)
.
Qed
.
End
ring_leader_election_example
.
Lemma
program_spec_adequate
:
adequate
NotStuck
(
program
#
())
({|
heap
:=
∅
;
used_proph_id
:=
∅|
})
(
λ
_
_,
True
)
.
Proof
.
apply
(
heap_adequacy
#
[
heapΣ
;
chanΣ
])
.
iIntros
(
Σ
)
"H"
.
by
iApply
program_spec
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment