Skip to content
Snippets Groups Projects
Commit 8b257448 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Tweaks.

parent 20ac3dcc
No related branches found
No related tags found
1 merge request!13Jonas/more polymorphism
......@@ -268,23 +268,37 @@ Section subtyping_rules.
Proof. iIntros "!>". iApply (iProto_le_exist_intro_r). Qed.
(* Elimination rules need inhabited variant of telescopes in the model *)
Lemma lty_le_texist_elim_l {kt : ktele Σ} (M : ltys Σ kt lmsg Σ) S :
Lemma lty_le_texist_elim_l {kt} (M : ltys Σ kt lmsg Σ) S :
( Xs, (<??> M Xs) <: S) -∗
(<??.. Xs> M Xs) <: S.
Proof. Admitted.
Proof.
iIntros "H". iInduction kt as [|k kt] "IH"; simpl; [done|].
iApply lty_le_exist_elim_l; iIntros (X).
iApply "IH". iIntros (Xs). iApply "H".
Qed.
Lemma lty_le_texist_elim_r {kt : ktele Σ} (M : ltys Σ kt lmsg Σ) S :
( Xs, S <: (<!!> M Xs)) -∗
S <: (<!!.. Xs> M Xs).
Proof. Admitted.
Proof.
iIntros "H". iInduction kt as [|k kt] "IH"; simpl; [done|].
iApply lty_le_exist_elim_r; iIntros (X).
iApply "IH". iIntros (Xs). iApply "H".
Qed.
Lemma lty_le_texist_intro_l {kt : ktele Σ} (M : ltys Σ kt lmsg Σ) Ks :
(<!!.. Xs> M Xs) <: (<!!> M Ks).
Proof. Admitted.
Proof.
induction Ks as [|k kT X Xs IH]; simpl; [iApply lty_le_refl|].
iApply lty_le_trans; [by iApply lty_le_exist_intro_l|]. iApply IH.
Qed.
Lemma lty_le_texist_intro_r {kt : ktele Σ} (M : ltys Σ kt lmsg Σ) Ks :
(<??> M Ks) <: (<??.. Xs> M Xs).
Proof. Admitted.
Proof.
induction Ks as [|k kt X Xs IH]; simpl; [iApply lty_le_refl|].
iApply lty_le_trans; [|by iApply lty_le_exist_intro_r]. iApply IH.
Qed.
Lemma lty_le_swap_recv_send A1 A2 S :
(<??> TY A1; <!!> TY A2; S) <: (<!!> TY A2; <??> TY A1; S).
......
......@@ -240,9 +240,9 @@ Section properties.
Qed.
Lemma ltyped_unpack {k} Γ1 Γ2 Γ3 x e1 e2 (C : lty Σ k ltty Σ) B :
(Γ1 e1 : lty_exist C Γ2) -∗
( Y, binder_insert x (C Y) Γ2 e2 : B Γ3) -∗
Γ1 (let: x := e1 in e2) : B binder_delete x Γ3.
(Γ1 e1 : lty_exist C Γ2) -∗
( Y, binder_insert x (C Y) Γ2 e2 : B Γ3) -∗
Γ1 (let: x := e1 in e2) : B binder_delete x Γ3.
Proof.
iIntros "#He1 #He2 !>". iIntros (vs) "HΓ1"=> /=.
wp_apply (wp_wand with "(He1 HΓ1)").
......@@ -258,29 +258,6 @@ Section properties.
iApply env_ltyped_delete=> //.
Qed.
Lemma texist_exist {kt : ktele Σ} (C : ltys Σ kt ltty Σ) v :
ltty_car (lty_texist C) v -∗ ( X, ltty_car (C X) v).
Proof. Admitted.
Lemma ltyped_unpack' {kt} Γ1 Γ2 Γ3 x e1 e2 (C : ltys Σ kt ltty Σ) B :
(Γ1 e1 : lty_texist C Γ2) -∗
( Ys, binder_insert x (C Ys) Γ2 e2 : B Γ3) -∗
Γ1 (let: x := e1 in e2) : B binder_delete x Γ3.
Proof.
iIntros "#He1 #He2 !>". iIntros (vs) "HΓ1"=> /=.
wp_apply (wp_wand with "(He1 HΓ1)").
iIntros (v) "[HC HΓ2]".
iDestruct (texist_exist with "HC") as (X) "HX".
wp_pures.
iDestruct (env_ltyped_insert _ _ x with "HX HΓ2") as "HΓ2".
iDestruct ("He2" with "HΓ2") as "He2'".
destruct x as [|x]; rewrite /= -?subst_map_insert //.
wp_apply (wp_wand with "He2'").
iIntros (w) "[HA2 HΓ3]".
iFrame.
iApply env_ltyped_delete=> //.
Qed.
(** Mutable Reference properties *)
Definition alloc : val := λ: "init", ref "init".
Lemma ltyped_alloc A :
......@@ -487,20 +464,6 @@ Section properties.
Section with_chan.
Context `{chanG Σ}.
Lemma lmsg_iMsg {kt : ktele Σ} (M : ktele_to_tele kt lmsg Σ) :
lty_msg_texist (λ Xs, M (ltys_to_tele_args Xs)) iMsg_texist M.
Proof.
induction kt.
- eauto.
- simpl.
rewrite /lty_msg_texist. simpl.
admit.
Admitted.
Lemma chan_texist_exist {kt : ktele Σ} c (M : ktele_to_tele kt lmsg Σ) :
ltty_car (chan (<??.. Xs> M (ltys_to_tele_args Xs) )) c -∗ c (<?.. Xs> M Xs).
Proof. rewrite -lmsg_iMsg. eauto. Qed.
Definition chanalloc : val := λ: "u", let: "cc" := new_chan #() in "cc".
Lemma ltyped_chanalloc S :
chanalloc : () (chan S * chan (lty_dual S)).
......@@ -552,34 +515,39 @@ Section properties.
iExists v, c. eauto with iFrame.
Qed.
Lemma ltyped_recv_poly {kt : ktele Σ} Γ1 Γ2 (c : string) (x : string) (e : expr)
(A : ltys Σ kt ltty Σ) (M : ltys Σ kt lsty Σ) (B : ltty Σ) :
( Ys, binder_insert x (A Ys) (<[c := (chan (M Ys))%lty ]> Γ1) e : B Γ2) -∗
<[c := (chan (<??> .. Xs, TY A Xs; M Xs))%lty]> Γ1
(let: x := recv c in e) : B binder_delete x Γ2.
Lemma iProto_le_lmsg_texist {kt : ktele Σ} (m : ltys Σ kt iMsg Σ) :
(<?> (.. Xs : ltys Σ kt, m Xs)%lmsg) (<? (Xs : ltys Σ kt)> m Xs).
Proof.
iIntros "#He !>". iIntros (vs) "HΓ"=> /=.
iDestruct (env_ltyped_lookup with "HΓ") as (v' Heq) "[Hc HΓ]".
iInduction kt as [|k kt] "IH".
{ rewrite /lty_msg_texist /=. by iExists LTysO. }
rewrite /lty_msg_texist /=. iIntros (X).
iApply (iProto_le_trans with "IH"). iIntros (Xs). by iExists (LTysS _ _).
Qed.
Lemma ltyped_recv_poly {kt} Γ1 Γ2 (xc x : string) (e : expr)
(A : ltys Σ kt ltty Σ) (S : ltys Σ kt lsty Σ) (B : ltty Σ) :
( Ys,
binder_insert x (A Ys) (<[xc:=(chan (S Ys))%lty]> Γ1) e : B Γ2) -∗
<[xc:=(chan (<??.. Xs> TY A Xs; S Xs))%lty]> Γ1
(let: x:=recv xc in e) : B binder_delete x Γ2.
Proof.
iIntros "#He !>". iIntros (vs) "HΓ /=".
iDestruct (env_ltyped_lookup with "HΓ") as (c Hxc) "[Hc HΓ]".
{ by apply lookup_insert. }
rewrite Heq.
iDestruct (@chan_texist_exist kt v' _ with "[Hc]") as "Hc".
{ admit. }
wp_apply (recv_spec with "[Hc]").
{ admit. }
iIntros (Xs) "[Hc HC]".
wp_pures.
iDestruct (texist_exist with "HC") as (X) "HX".
wp_pures.
iDestruct (env_ltyped_insert _ _ c (chan _) _ with "Hc HΓ") as "HΓ"=> /=.
iDestruct (env_ltyped_insert _ _ x with "[HX] HΓ") as "HΓ".
{ admit. }
iDestruct ("He" with "[HΓ]") as "He'".
{ admit. }
rewrite Hxc.
iAssert (c <? (Xs : ltys Σ kt) (v : val)>
MSG v {{ ltty_car (A Xs) v }}; lsty_car (S Xs)) with "[Hc]" as "Hc".
{ iApply (iProto_mapsto_le with "Hc"); iIntros "!>".
iApply iProto_le_lmsg_texist. }
wp_recv (Xs v) as "HA". wp_pures.
rewrite -subst_map_insert.
wp_apply (wp_wand with "He'").
iIntros (v) "[HB HΓ]". iFrame.
iApply env_ltyped_delete=> //.
Admitted.
wp_apply (wp_wand with "(He [-]) []").
{ iApply (env_ltyped_insert _ _ x with "HA").
rewrite delete_insert_delete.
iEval (rewrite -(insert_id vs xc c) // -(insert_delete Γ1)).
by iApply (env_ltyped_insert _ _ xc with "[Hc] HΓ"). }
iIntros (w) "[$ HΓ]". by iApply env_ltyped_delete.
Qed.
Lemma ltyped_recv Γ (x : string) A S :
<[x := (chan (<??> TY A; S))%lty]> Γ recv x : A <[x:=(chan S)%lty]> Γ.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment