Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
Actris
Commits
72ba3b27
Commit
72ba3b27
authored
1 month ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Change positions of unfold/fold to make things consistent with iProp.
parent
316a5108
Branches
robbert/fold_iProto
Branches containing commit
No related tags found
1 merge request
!40
Change positions of unfold/fold to make things consistent with iProp.
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
actris/channel/proto_model.v
+52
-48
52 additions, 48 deletions
actris/channel/proto_model.v
with
52 additions
and
48 deletions
actris/channel/proto_model.v
+
52
−
48
View file @
72ba3b27
...
@@ -53,48 +53,63 @@ Definition proto_auxO (V : Type) (PROP : ofe) (A : ofe) : ofe :=
...
@@ -53,48 +53,63 @@ Definition proto_auxO (V : Type) (PROP : ofe) (A : ofe) : ofe :=
Definition
proto_auxOF
(
V
:
Type
)
(
PROP
:
ofe
)
:
oFunctor
:=
Definition
proto_auxOF
(
V
:
Type
)
(
PROP
:
ofe
)
:
oFunctor
:=
optionOF
(
actionO
*
(
V
-
d
>
▶
∙
-
n
>
PROP
))
.
optionOF
(
actionO
*
(
V
-
d
>
▶
∙
-
n
>
PROP
))
.
Definition
proto_result
(
V
:
Type
)
:=
result_2
(
proto_auxOF
V
)
.
Definition
pre_proto_result
(
V
:
Type
)
:=
result_2
(
proto_auxOF
V
)
.
Definition
pre_proto
(
V
:
Type
)
(
PROPn
PROP
:
ofe
)
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
ofe
:=
solution_2_car
(
pre_proto_result
V
)
PROPn
_
PROP
_
.
Global
Instance
pre_proto_cofe
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Cofe
(
pre_proto
V
PROPn
PROP
)
.
Proof
.
apply
_
.
Qed
.
Definition
proto
(
V
:
Type
)
(
PROPn
PROP
:
ofe
)
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
ofe
:=
Definition
proto
(
V
:
Type
)
(
PROPn
PROP
:
ofe
)
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
ofe
:=
solution_2_car
(
proto_result
V
)
PROPn
_
PROP
_
.
proto_auxO
V
PROP
(
pre_proto
V
PROP
PROPn
)
.
Global
Instance
proto_cofe
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Cofe
(
proto
V
PROPn
PROP
)
.
Global
Instance
proto_cofe
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Cofe
(
proto
V
PROPn
PROP
)
.
Proof
.
apply
_
.
Qed
.
Proof
.
apply
_
.
Qed
.
Lemma
proto_iso
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Lemma
proto_iso
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
ofe_iso
(
proto
_auxO
V
PROP
(
proto
V
PROP
PROP
n
)
)
(
proto
V
PROPn
PROP
)
.
ofe_iso
(
proto
V
PROP
n
PROP
)
(
pre_
proto
V
PROPn
PROP
)
.
Proof
.
apply
proto_result
.
Qed
.
Proof
.
apply
pre_
proto_result
.
Qed
.
Definition
proto_fold
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Definition
proto_fold
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
pr
oto_auxO
V
PROP
(
proto
V
PROP
PROP
n
)
-
n
>
proto
V
PROPn
PROP
:=
ofe_iso_
1
proto_iso
.
pr
e_
proto
V
PROP
n
PROP
-
n
>
proto
V
PROPn
PROP
:=
ofe_iso_
2
proto_iso
.
Definition
proto_unfold
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Definition
proto_unfold
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
proto
V
PROPn
PROP
-
n
>
pr
oto_auxO
V
PROP
(
proto
V
PROP
PROP
n
)
:=
ofe_iso_
2
proto_iso
.
proto
V
PROPn
PROP
-
n
>
pr
e_
proto
V
PROP
n
PROP
:=
ofe_iso_
1
proto_iso
.
Lemma
proto_fold_unfold
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
p
:
proto
V
PROPn
PROP
)
:
Lemma
proto_fold_unfold
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
p
:
proto
V
PROPn
PROP
)
:
proto_fold
(
proto_unfold
p
)
≡
p
.
proto_fold
(
proto_unfold
p
)
≡
p
.
Proof
.
apply
(
ofe_iso_12
proto_iso
)
.
Qed
.
Lemma
proto_unfold_fold
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
p
:
proto_auxO
V
PROP
(
proto
V
PROP
PROPn
))
:
proto_unfold
(
proto_fold
p
)
≡
p
.
Proof
.
apply
(
ofe_iso_21
proto_iso
)
.
Qed
.
Proof
.
apply
(
ofe_iso_21
proto_iso
)
.
Qed
.
Lemma
proto_unfold_fold
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
p
:
pre_proto
V
PROPn
PROP
)
:
proto_unfold
(
proto_fold
p
)
≡
p
.
Proof
.
apply
(
ofe_iso_12
proto_iso
)
.
Qed
.
Definition
proto_end
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
proto
V
PROPn
PROP
:=
Definition
proto_end
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
proto
V
PROPn
PROP
:=
proto_fold
None
.
None
.
Definition
proto_message
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
a
:
action
)
Definition
proto_message
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
a
:
action
)
(
m
:
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
:
proto
V
PROPn
PROP
:=
(
m
:
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
:
proto
V
PROPn
PROP
:=
proto_fold
(
Some
(
a
,
m
)
)
.
Some
(
a
,
λ
v
,
m
v
◎
laterO_map
proto_fold
)
.
Global
Instance
proto_message_ne
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
n
:
Global
Instance
proto_message_ne
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
n
:
Proper
(
pointwise_relation
V
(
dist
n
)
==>
dist
n
)
Proper
(
pointwise_relation
V
(
dist
n
)
==>
dist
n
)
(
proto_message
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
)
.
(
proto_message
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
)
.
Proof
.
intros
c1
c2
Hc
.
rewrite
/
proto_message
.
f_equiv
.
by
repeat
constructor
.
Qed
.
Proof
.
intros
c1
c2
Hc
.
rewrite
/
proto_message
.
(
repeat
constructor
)=>
//=
v
.
by
f_equiv
.
Qed
.
Global
Instance
proto_message_proper
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
:
Global
Instance
proto_message_proper
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
:
Proper
(
pointwise_relation
V
(
≡
)
==>
(
≡
))
Proper
(
pointwise_relation
V
(
≡
)
==>
(
≡
))
(
proto_message
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
)
.
(
proto_message
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
)
.
Proof
.
intros
c1
c2
Hc
.
rewrite
/
proto_message
.
f_equiv
.
by
repeat
constructor
.
Qed
.
Proof
.
intros
c1
c2
Hc
.
rewrite
/
proto_message
.
(
repeat
constructor
)=>
//=
v
.
by
f_equiv
.
Qed
.
Lemma
proto_case
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
p
:
proto
V
PROPn
PROP
)
:
Lemma
proto_case
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
p
:
proto
V
PROPn
PROP
)
:
p
≡
proto_end
∨
∃
a
m
,
p
≡
proto_message
a
m
.
p
≡
proto_end
∨
∃
a
m
,
p
≡
proto_message
a
m
.
Proof
.
Proof
.
destruct
(
proto_unfold
p
)
as
[[
a
m
]|]
eqn
:
E
;
simpl
in
*
;
last
first
.
destruct
p
as
[[
a
m
]|];
[|
by
left
]
.
-
left
.
by
rewrite
-
(
proto_fold_unfold
p
)
E
.
right
.
exists
a
,
(
λ
v
,
m
v
◎
laterO_map
proto_unfold
)
.
-
right
.
exists
a
,
m
.
by
rewrite
/
proto_message
-
E
proto_fold_unfold
.
rewrite
/
proto_message
.
do
2
f_equiv
.
intros
v
p
;
simpl
.
f_equiv
.
rewrite
-
later_map_compose
-
{
1
}(
later_map_id
p
)
.
apply
later_map_ext
=>
p'
/=.
by
rewrite
proto_unfold_fold
.
Qed
.
Qed
.
Global
Instance
proto_inhabited
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Global
Instance
proto_inhabited
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Inhabited
(
proto
V
PROPn
PROP
)
:=
populate
proto_end
.
Inhabited
(
proto
V
PROPn
PROP
)
:=
populate
proto_end
.
...
@@ -103,22 +118,16 @@ Lemma proto_message_equivI `{!BiInternalEq SPROP} {V} `{!Cofe PROPn, !Cofe PROP}
...
@@ -103,22 +118,16 @@ Lemma proto_message_equivI `{!BiInternalEq SPROP} {V} `{!Cofe PROPn, !Cofe PROP}
proto_message
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a1
m1
≡
proto_message
a2
m2
proto_message
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a1
m1
≡
proto_message
a2
m2
⊣⊢@
{
SPROP
}
⌜
a1
=
a2
⌝
∧
(
∀
v
p'
,
m1
v
p'
≡
m2
v
p'
)
.
⊣⊢@
{
SPROP
}
⌜
a1
=
a2
⌝
∧
(
∀
v
p'
,
m1
v
p'
≡
m2
v
p'
)
.
Proof
.
Proof
.
trans
(
proto_unfold
(
proto_message
a1
m1
)
≡
proto_unfold
(
proto_message
a2
m2
)
:
SPROP
)
%
I
.
rewrite
/
proto_message
option_equivI
prod_equivI
/=.
{
iSplit
.
rewrite
discrete_eq
discrete_fun_equivI
.
f_equiv
;
[
done
|]
.
f_equiv
=>
x
.
-
iIntros
"Heq"
.
by
iRewrite
"Heq"
.
rewrite
ofe_morO_equivI
/=.
iSplit
;
iIntros
"H %p //"
.
-
iIntros
"Heq"
.
rewrite
-
{
2
}(
proto_fold_unfold
(
proto_message
_
_))
.
assert
(
p
≡
later_map
proto_fold
(
later_map
proto_unfold
p
))
as
->
;
last
done
.
iRewrite
"Heq"
.
by
rewrite
proto_fold_unfold
.
}
rewrite
-
later_map_compose
-
{
1
}(
later_map_id
p
)
.
rewrite
/
proto_message
!
proto_unfold_fold
option_equivI
prod_equivI
/=.
apply
later_map_ext
=>
p'
/=.
by
rewrite
proto_fold_unfold
.
rewrite
discrete_eq
discrete_fun_equivI
.
by
setoid_rewrite
ofe_morO_equivI
.
Qed
.
Qed
.
Lemma
proto_message_end_equivI
`{
!
BiInternalEq
SPROP
}
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
m
:
Lemma
proto_message_end_equivI
`{
!
BiInternalEq
SPROP
}
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
m
:
proto_message
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
m
≡
proto_end
⊢@
{
SPROP
}
False
.
proto_message
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
m
≡
proto_end
⊢@
{
SPROP
}
False
.
Proof
.
Proof
.
by
rewrite
option_equivI
.
Qed
.
trans
(
proto_unfold
(
proto_message
a
m
)
≡
proto_unfold
proto_end
:
SPROP
)
%
I
.
{
iIntros
"Heq"
.
by
iRewrite
"Heq"
.
}
by
rewrite
/
proto_message
!
proto_unfold_fold
option_equivI
.
Qed
.
Lemma
proto_end_message_equivI
`{
!
BiInternalEq
SPROP
}
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
m
:
Lemma
proto_end_message_equivI
`{
!
BiInternalEq
SPROP
}
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
m
:
proto_end
≡
proto_message
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
m
⊢@
{
SPROP
}
False
.
proto_end
≡
proto_message
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
m
⊢@
{
SPROP
}
False
.
Proof
.
by
rewrite
internal_eq_sym
proto_message_end_equivI
.
Qed
.
Proof
.
by
rewrite
internal_eq_sym
proto_message_end_equivI
.
Qed
.
...
@@ -126,7 +135,11 @@ Proof. by rewrite internal_eq_sym proto_message_end_equivI. Qed.
...
@@ -126,7 +135,11 @@ Proof. by rewrite internal_eq_sym proto_message_end_equivI. Qed.
Definition
proto_elim
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
}
Definition
proto_elim
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
}
(
x
:
A
)
(
f
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
(
x
:
A
)
(
f
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
(
p
:
proto
V
PROPn
PROP
)
:
A
:=
(
p
:
proto
V
PROPn
PROP
)
:
A
:=
match
proto_unfold
p
with
None
=>
x
|
Some
(
a
,
m
)
=>
f
a
m
end
.
match
p
with
|
None
=>
x
|
Some
(
a
,
m
)
=>
f
a
(
λ
v
,
m
v
◎
laterO_map
proto_unfold
)
end
.
Global
Arguments
proto_elim
:
simpl
never
.
Lemma
proto_elim_ne
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
:
ofe
}
Lemma
proto_elim_ne
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
:
ofe
}
(
x
:
A
)
(
f1
f2
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
p1
p2
n
:
(
x
:
A
)
(
f1
f2
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
p1
p2
n
:
...
@@ -134,31 +147,22 @@ Lemma proto_elim_ne {V} `{!Cofe PROPn, !Cofe PROP} {A : ofe}
...
@@ -134,31 +147,22 @@ Lemma proto_elim_ne {V} `{!Cofe PROPn, !Cofe PROP} {A : ofe}
p1
≡
{
n
}
≡
p2
→
p1
≡
{
n
}
≡
p2
→
proto_elim
x
f1
p1
≡
{
n
}
≡
proto_elim
x
f2
p2
.
proto_elim
x
f1
p1
≡
{
n
}
≡
proto_elim
x
f2
p2
.
Proof
.
Proof
.
intros
Hf
Hp
.
rewrite
/
proto_elim
.
intros
Hf
[[
a1
m1
]
[
a2
m2
]
[[
=->
]
?]|];
rewrite
/
proto_elim
//=.
apply
(_
:
NonExpansive
proto_unfold
)
in
Hp
apply
Hf
=>
v
.
by
f_equiv
.
as
[[
a1
m1
]
[
a2
m2
]
[
->
?]|];
simplify_eq
/=
;
[|
done
]
.
apply
Hf
.
destruct
n
;
by
simpl
.
Qed
.
Qed
.
Lemma
proto_elim_end
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
:
ofe
}
Lemma
proto_elim_end
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
:
ofe
}
(
x
:
A
)
(
f
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
:
(
x
:
A
)
(
f
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
:
proto_elim
x
f
proto_end
≡
x
.
proto_elim
x
f
proto_end
≡
x
.
Proof
.
Proof
.
done
.
Qed
.
rewrite
/
proto_elim
/
proto_end
.
pose
proof
(
proto_unfold_fold
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
None
)
as
Hfold
.
by
destruct
(
proto_unfold
(
proto_fold
None
))
as
[[??]|]
eqn
:
E
;
inversion
Hfold
.
Qed
.
Lemma
proto_elim_message
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
:
ofe
}
Lemma
proto_elim_message
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
:
ofe
}
(
x
:
A
)
(
f
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
a
m
:
(
x
:
A
)
(
f
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
a
m
:
(
∀
a
,
Proper
(
pointwise_relation
_
(
≡
)
==>
(
≡
))
(
f
a
))
→
(
∀
a
,
Proper
(
pointwise_relation
_
(
≡
)
==>
(
≡
))
(
f
a
))
→
proto_elim
x
f
(
proto_message
a
m
)
≡
f
a
m
.
proto_elim
x
f
(
proto_message
a
m
)
≡
f
a
m
.
Proof
.
Proof
.
intros
.
rewrite
/
proto_elim
/
proto_message
/=.
intros
.
rewrite
/
proto_elim
/
proto_message
/=.
f_equiv
=>
v
p
/=.
f_equiv
.
pose
proof
(
proto_unfold_fold
(
V
:=
V
)
(
PROPn
:=
PROPn
)
rewrite
-
later_map_compose
-
{
2
}(
later_map_id
p
)
.
(
PROP
:=
PROP
)
(
Some
(
a
,
m
)))
as
Hfold
.
apply
later_map_ext
=>
p'
/=.
by
rewrite
proto_fold_unfold
.
destruct
(
proto_unfold
(
proto_fold
(
Some
(
a
,
m
))))
as
[[??]|]
eqn
:
E
;
inversion
Hfold
as
[??
[
Ha
Hc
]|];
simplify_eq
/=.
by
f_equiv
=>
v
.
Qed
.
Qed
.
(** Functor *)
(** Functor *)
...
@@ -214,7 +218,7 @@ Qed.
...
@@ -214,7 +218,7 @@ Qed.
Lemma
proto_map_end
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
Lemma
proto_map_end
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
(
gn
:
PROPn'
-
n
>
PROPn
)
(
g
:
PROP
-
n
>
PROP'
)
:
(
gn
:
PROPn'
-
n
>
PROPn
)
(
g
:
PROP
-
n
>
PROP'
)
:
proto_map
(
V
:=
V
)
gn
g
proto_end
≡
proto_end
.
proto_map
(
V
:=
V
)
gn
g
proto_end
≡
proto_end
.
Proof
.
by
rewrite
proto_map_unfold
/
proto_map_aux
/=
proto_elim_end
.
Qed
.
Proof
.
by
rewrite
proto_map_unfold
/
proto_map_aux
.
Qed
.
Lemma
proto_map_message
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
Lemma
proto_map_message
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
(
gn
:
PROPn'
-
n
>
PROPn
)
(
g
:
PROP
-
n
>
PROP'
)
a
m
:
(
gn
:
PROPn'
-
n
>
PROPn
)
(
g
:
PROP
-
n
>
PROP'
)
a
m
:
proto_map
(
V
:=
V
)
gn
g
(
proto_message
a
m
)
proto_map
(
V
:=
V
)
gn
g
(
proto_message
a
m
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment