Skip to content
Snippets Groups Projects
Commit 43f07f05 authored by Jonas Kastberg's avatar Jonas Kastberg
Browse files

WIP: Lifting proto_model to a map of protocols

parent 316a5108
No related branches found
No related tags found
No related merge requests found
......@@ -34,6 +34,8 @@ The defined functions on the type [proto] are:
a given protocol.
- [proto_app], which appends two protocols [p1] and [p2], by substituting
all terminations [END] in [p1] with [p2]. *)
From stdpp Require Import gmap.
From iris.algebra Require Import gmap.
From iris.base_logic Require Import base_logic.
From iris.proofmode Require Import proofmode.
From multris.utils Require Import cofe_solver_2.
......@@ -41,19 +43,30 @@ Set Default Proof Using "Type".
Module Export action.
Inductive tag := Send | Recv.
Canonical Structure tagO := leibnizO tag.
Global Instance tag_decidable : EqDecision tag.
Proof. solve_decision. Qed.
Global Program Instance tag_countable : Countable tag :=
{|
encode t := match t with | Send => 1%positive | Recv => 2%positive end;
decode p := Some match p return tag with 1%positive => Send | _ => Recv end
|}.
Next Obligation. by intros []. Qed.
Definition action : Set := tag * nat.
Global Instance action_inhabited : Inhabited action := populate (Send,0).
Canonical Structure actionO := leibnizO action.
Global Instance action_countable : Countable action.
Proof. unfold action. apply prod_countable. Qed.
Definition action_dual (a : action) : action :=
match a with (Send, n) => (Recv, n) | (Recv, n) => (Send, n) end.
Global Instance action_dual_involutive : Involutive (=) action_dual.
Proof. by intros [[]]. Qed.
Canonical Structure actionO := leibnizO action.
End action.
Definition proto_auxO (V : Type) (PROP : ofe) (A : ofe) : ofe :=
optionO (prodO actionO (V -d> laterO A -n> PROP)).
(gmapO actionO (V -d> laterO A -n> PROP)).
Definition proto_auxOF (V : Type) (PROP : ofe) : oFunctor :=
optionOF (actionO * (V -d> -n> PROP)).
(gmapOF actionO ((V -d> -n> PROP))).
Definition proto_result (V : Type) := result_2 (proto_auxOF V).
Definition proto (V : Type) (PROPn PROP : ofe) `{!Cofe PROPn, !Cofe PROP} : ofe :=
......@@ -77,30 +90,95 @@ Lemma proto_unfold_fold {V} `{!Cofe PROPn, !Cofe PROP}
Proof. apply (ofe_iso_21 proto_iso). Qed.
Definition proto_end {V} `{!Cofe PROPn, !Cofe PROP} : proto V PROPn PROP :=
proto_fold None.
proto_fold .
Definition proto_message {V} `{!Cofe PROPn, !Cofe PROP} (a : action)
(m : V laterO (proto V PROP PROPn) -n> PROP) : proto V PROPn PROP :=
proto_fold (Some (a, m)).
proto_fold {[a := m]}.
Definition proto_union {V} `{!Cofe PROPn, !Cofe PROP} (p1 p2 : proto V PROPn PROP) : proto V PROPn PROP :=
proto_fold (map_union (proto_unfold p1) (proto_unfold p2)).
Global Instance proto_message_ne {V} `{!Cofe PROPn, !Cofe PROP} a n :
Proper (pointwise_relation V (dist n) ==> dist n)
(proto_message (PROPn:=PROPn) (PROP:=PROP) a).
Proof. intros c1 c2 Hc. rewrite /proto_message. f_equiv. by repeat constructor. Qed.
Proof.
intros c1 c2 Hc. rewrite /proto_message. f_equiv. by apply insert_ne.
Qed.
(* TODO: Why does unification algorithm fail here? *)
Global Instance proto_message_proper {V} `{!Cofe PROPn, !Cofe PROP} a :
Proper (pointwise_relation V () ==> ())
(proto_message (PROPn:=PROPn) (PROP:=PROP) a).
Proof. intros c1 c2 Hc. rewrite /proto_message. f_equiv. by repeat constructor. Qed.
Proof. intros c1 c2 Hc. rewrite /proto_message. f_equiv. by apply: insert_proper. Qed.
Lemma proto_case {V} `{!Cofe PROPn, !Cofe PROP} (p : proto V PROPn PROP) :
p proto_end a m, p proto_message a m.
Global Instance proto_union_ne {V} `{!Cofe PROPn, !Cofe PROP} n :
Proper ((dist n) ==> (dist n) ==> dist n)
(proto_union (V:=V) (PROPn:=PROPn) (PROP:=PROP)).
Proof.
destruct (proto_unfold p) as [[a m]|] eqn:E; simpl in *; last first.
- left. by rewrite -(proto_fold_unfold p) E.
- right. exists a, m. by rewrite /proto_message -E proto_fold_unfold.
intros p11 p12 Hp1 p21 p22 Hp2. rewrite /proto_union. by do 3 f_equiv.
Qed.
(* TODO: Why does unification algorithm fail here? *)
Global Instance proto_union_proper {V} `{!Cofe PROPn, !Cofe PROP} :
Proper (() ==> () ==> ())
(proto_union (V:=V) (PROPn:=PROPn) (PROP:=PROP)).
Proof.
intros p11 p12 Hp1 p21 p22 Hp2. rewrite /proto_union. f_equiv.
(* TODO: Proper stuff *)
Admitted.
(* Should hold in the same way map_ind holds *)
Lemma proto_ind {V} `{!Cofe PROPn, !Cofe PROP} (P : proto V PROPn PROP Prop) :
Proper (() ==> impl) P
P proto_end ( i x p, proto_unfold p !! i None P p P (proto_union (proto_message i x) p)) m, P m.
Proof.
intros HP ? Hins m'.
assert ( m, m = proto_unfold m') as [m Hm].
{ eexists _. done. }
revert Hm. revert m'.
induction (map_wf m) as [m _ IH].
intros m' Hm.
destruct (map_choose_or_empty m) as [(i&x&?)| H'].
{
assert (m' = proto_union (proto_message i x) (proto_fold (delete i (proto_unfold m')))).
{ admit. }
rewrite H1.
apply Hins.
{ admit. } (* TODO Map lookup proper stuff *)
eapply IH; [|done].
admit. (* TODO: Proper subset stuff *)
}
rewrite /proto_end in H.
subst.
rewrite -H' in H.
rewrite -(proto_fold_unfold m'). done.
Admitted.
Global Instance proto_inhabited {V} `{!Cofe PROPn, !Cofe PROP} :
Inhabited (proto V PROPn PROP) := populate proto_end.
(* Derived laws *)
Section internal_eq_derived.
Context {PROP : bi} `{!BiInternalEq PROP}.
Implicit Types P : PROP.
(* Force implicit argument PROP *)
Notation "P ⊢ Q" := (P ⊢@{PROP} Q).
Notation "P ⊣⊢ Q" := (P ⊣⊢@{PROP} Q).
Lemma gmap_equivI `{Countable K} {A : ofe} (m1 m2 : gmap K A) :
m1 m2 ⊣⊢ i, m1 !! i m2 !! i.
Proof. Admitted.
Lemma gmap_union_equiv_eqI `{Countable K} {A : ofe} (m m1 m2 : gmap K A) :
m m1 m2 ⊣⊢ m1' m2', m = m1' m2' m1' m1 m2' m2.
Proof. Admitted.
Lemma gmap_singleton_equivI `{Countable K} {A : ofe} (k1 k2 : K) (a1 a2 : A) :
{[ k1 := a1 ]} {[ k2 := a2 ]} ⊣⊢ k1 = k2 a1 a2.
Proof. Admitted.
End internal_eq_derived.
Lemma proto_message_equivI `{!BiInternalEq SPROP} {V} `{!Cofe PROPn, !Cofe PROP} a1 a2 m1 m2 :
proto_message (V:=V) (PROPn:=PROPn) (PROP:=PROP) a1 m1 proto_message a2 m2
⊣⊢@{SPROP} a1 = a2 ( v p', m1 v p' m2 v p').
......@@ -110,79 +188,52 @@ Proof.
- iIntros "Heq". by iRewrite "Heq".
- iIntros "Heq". rewrite -{2}(proto_fold_unfold (proto_message _ _)).
iRewrite "Heq". by rewrite proto_fold_unfold. }
rewrite /proto_message !proto_unfold_fold option_equivI prod_equivI /=.
rewrite discrete_eq discrete_fun_equivI.
rewrite /proto_message !proto_unfold_fold.
rewrite gmap_singleton_equivI /=.
rewrite discrete_fun_equivI.
by setoid_rewrite ofe_morO_equivI.
Qed.
Lemma proto_message_end_equivI `{!BiInternalEq SPROP} {V} `{!Cofe PROPn, !Cofe PROP} a m :
proto_message (V:=V) (PROPn:=PROPn) (PROP:=PROP) a m proto_end ⊢@{SPROP} False.
Proof.
trans (proto_unfold (proto_message a m) proto_unfold proto_end : SPROP)%I.
{ iIntros "Heq". by iRewrite "Heq". }
by rewrite /proto_message !proto_unfold_fold option_equivI.
Qed.
{ iIntros "Heq". by iRewrite "Heq". }
rewrite /proto_message !proto_unfold_fold.
rewrite gmap_equivI.
Admitted.
Lemma proto_end_message_equivI `{!BiInternalEq SPROP} {V} `{!Cofe PROPn, !Cofe PROP} a m :
proto_end proto_message (V:=V) (PROPn:=PROPn) (PROP:=PROP) a m ⊢@{SPROP} False.
Proof. by rewrite internal_eq_sym proto_message_end_equivI. Qed.
(** The eliminator [proto_elim x f p] is only well-behaved if the function [f]
is contractive *)
Definition proto_elim {V} `{!Cofe PROPn, !Cofe PROP} {A}
(x : A) (f : action (V laterO (proto V PROP PROPn) -n> PROP) A)
(p : proto V PROPn PROP) : A :=
match proto_unfold p with None => x | Some (a, m) => f a m end.
Lemma proto_elim_ne {V} `{!Cofe PROPn, !Cofe PROP} {A : ofe}
(x : A) (f1 f2 : action (V laterO (proto V PROP PROPn) -n> PROP) A) p1 p2 n :
( a m1 m2, ( v, m1 v {n} m2 v) f1 a m1 {n} f2 a m2)
p1 {n} p2
proto_elim x f1 p1 {n} proto_elim x f2 p2.
Proof.
intros Hf Hp. rewrite /proto_elim.
apply (_ : NonExpansive proto_unfold) in Hp
as [[a1 m1] [a2 m2] [-> ?]|]; simplify_eq/=; [|done].
apply Hf. destruct n; by simpl.
Qed.
Lemma proto_elim_end {V} `{!Cofe PROPn, !Cofe PROP} {A : ofe}
(x : A) (f : action (V laterO (proto V PROP PROPn) -n> PROP) A) :
proto_elim x f proto_end x.
Proof.
rewrite /proto_elim /proto_end.
pose proof (proto_unfold_fold (V:=V) (PROPn:=PROPn) (PROP:=PROP) None) as Hfold.
by destruct (proto_unfold (proto_fold None)) as [[??]|] eqn:E; inversion Hfold.
Qed.
Lemma proto_elim_message {V} `{!Cofe PROPn, !Cofe PROP} {A : ofe}
(x : A) (f : action (V laterO (proto V PROP PROPn) -n> PROP) A)
`{Hf : a, Proper (pointwise_relation _ () ==> ()) (f a)} a m :
proto_elim x f (proto_message a m) f a m.
Proof.
rewrite /proto_elim /proto_message /=.
pose proof (proto_unfold_fold (V:=V) (PROPn:=PROPn)
(PROP:=PROP) (Some (a, m))) as Hfold.
destruct (proto_unfold (proto_fold (Some (a, m))))
as [[??]|] eqn:E; inversion Hfold as [?? [Ha Hc]|]; simplify_eq/=.
by f_equiv=> v.
Qed.
(** Functor *)
Program Definition proto_map_aux {V} `{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'}
(g : PROP -n> PROP') (rec : proto V PROP' PROPn' -n> proto V PROP PROPn) :
proto V PROPn PROP -n> proto V PROPn' PROP' := λne p,
proto_elim proto_end (λ a m, proto_message a (λ v, g m v laterO_map rec)) p.
(* fmap (λ (m:proto V PROPn PROP), (λ v, g ◎ m v ◎ laterO_map rec)) (proto_unfold p). *)
(* proto_fold $ gmap_fmap _ _ (λ m, (λ v, g ◎ m v ◎ laterO_map rec)) (proto_unfold p). *)
proto_fold $ fmap (λ m, (λ v, g m v laterO_map rec)) (proto_unfold p).
Next Obligation.
intros V PROPn ? PROPn' ? PROP ? PROP' ? g rec n p1 p2 Hp.
apply proto_elim_ne=> // a m1 m2 Hm. by repeat f_equiv.
Qed.
f_equiv. simpl.
apply (_ : NonExpansive proto_unfold) in Hp.
Admitted.
(* TODO: Needs non expansiveness of fmap *)
(* (* Admitted. *) *)
(* apply map_fmap_ne. *)
(* apply gmap_fmap_ne_ext. *)
(* apply proto_elim_ne=> // a m1 m2 Hm. by repeat f_equiv. *)
(* Qed. *)
Global Instance proto_map_aux_contractive {V}
`{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'} (g : PROP -n> PROP') :
Contractive (proto_map_aux (V:=V) (PROPn:=PROPn) (PROPn':=PROPn') g).
Proof.
intros n rec1 rec2 Hrec p. simpl. apply proto_elim_ne=> // a m1 m2 Hm.
f_equiv=> v p' /=. do 2 f_equiv; [done|].
apply Next_contractive; by dist_later_intro as n' Hn'.
Qed.
Proof. Admitted.
(* intros n rec1 rec2 Hrec p. simpl. apply proto_elim_ne=> // a m1 m2 Hm. *)
(* f_equiv=> v p' /=. do 2 f_equiv; [done|]. *)
(* apply Next_contractive; by dist_later_intro as n' Hn'. *)
(* Qed. *)
Definition proto_map_aux_2 {V}
`{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'}
......@@ -218,16 +269,24 @@ Qed.
Lemma proto_map_end {V} `{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'}
(gn : PROPn' -n> PROPn) (g : PROP -n> PROP') :
proto_map (V:=V) gn g proto_end proto_end.
Proof. by rewrite proto_map_unfold /proto_map_aux /= proto_elim_end. Qed.
Proof.
rewrite proto_map_unfold /proto_map_aux /=.
pose proof (proto_unfold_fold (V:=V) (PROPn:=PROPn) (PROP:=PROP) ) as Hfold.
Admitted.
Lemma proto_map_message {V} `{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'}
(gn : PROPn' -n> PROPn) (g : PROP -n> PROP') a m :
proto_map (V:=V) gn g (proto_message a m)
proto_message a (λ v, g m v laterO_map (proto_map g gn)).
Proof.
rewrite proto_map_unfold /proto_map_aux /=.
rewrite ->proto_elim_message; [done|].
intros a' m1 m2 Hm. f_equiv; solve_proper.
Qed.
Admitted.
Lemma proto_map_union {V} `{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'}
(gn : PROPn' -n> PROPn) (g : PROP -n> PROP') p1 p2 :
proto_map (V:=V) gn g (proto_union p1 p2)
proto_union (proto_map gn g p1) (proto_map gn g p2).
Proof.
rewrite proto_map_unfold /proto_map_aux /=.
Admitted.
Lemma proto_map_ne {V}
`{Hcn:!Cofe PROPn, Hcn':!Cofe PROPn', Hc:!Cofe PROP, Hc':!Cofe PROP'}
......@@ -237,11 +296,17 @@ Lemma proto_map_ne {V}
Proof.
revert PROPn Hcn PROPn' Hcn' PROP Hc PROP' Hc' gn1 gn2 g1 g2 p.
induction (lt_wf n) as [n _ IH]=>
PROPn ? PROPn' ? PROP ? PROP' ? gn1 gn2 g1 g2 p Hgn Hg /=.
destruct (proto_case p) as [->|(a & m & ->)]; [by rewrite !proto_map_end|].
PROPn ? PROPn' ? PROP ? PROP' ? gn1 gn2 g1 g2 p Hgn Hg /=.
pattern p. apply proto_ind.
{ intros p1 p2 Hp H'. rewrite -Hp. done. }
{ rewrite !proto_map_end. done. }
intros a m p' Hp Hp'.
rewrite !proto_map_union.
rewrite !proto_map_message /=.
apply proto_message_ne=> // v p' /=. f_equiv; [done|]. f_equiv.
apply Next_contractive; dist_later_intro as n' Hn'; eauto using dist_le with lia.
apply proto_union_ne.
{ apply proto_message_ne => // v p'' /=. f_equiv; [done|]. f_equiv.
apply Next_contractive; dist_later_intro as n' Hn'; eauto using dist_le with lia. }
done.
Qed.
Lemma proto_map_ext {V} `{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'}
(gn1 gn2 : PROPn' -n> PROPn) (g1 g2 : PROP -n> PROP') p :
......@@ -255,9 +320,14 @@ Lemma proto_map_id {V} `{Hcn:!Cofe PROPn, Hc:!Cofe PROP} (p : proto V PROPn PROP
Proof.
apply equiv_dist=> n. revert PROPn Hcn PROP Hc p.
induction (lt_wf n) as [n _ IH]=> PROPn ? PROP ? p /=.
destruct (proto_case p) as [->|(a & m & ->)]; [by rewrite !proto_map_end|].
rewrite !proto_map_message /=. apply proto_message_ne=> // v p' /=. f_equiv.
apply Next_contractive; dist_later_intro as n' Hn'; auto.
pattern p. apply proto_ind.
{ intros p1 p2 Hp H'. rewrite -Hp. done. }
{ rewrite !proto_map_end. done. }
intros a m p' Hp Hp'.
rewrite proto_map_union. f_equiv.
{ rewrite !proto_map_message /=. apply proto_message_ne=> // v p'' /=. f_equiv.
apply Next_contractive; dist_later_intro as n' Hn'; auto. }
done.
Qed.
Lemma proto_map_compose {V}
`{Hcn:!Cofe PROPn, Hcn':!Cofe PROPn', Hcn'':!Cofe PROPn'',
......@@ -265,14 +335,19 @@ Lemma proto_map_compose {V}
(gn1 : PROPn'' -n> PROPn') (gn2 : PROPn' -n> PROPn)
(g1 : PROP -n> PROP') (g2 : PROP' -n> PROP'') (p : proto V PROPn PROP) :
proto_map (gn2 gn1) (g2 g1) p proto_map gn1 g2 (proto_map gn2 g1 p).
Proof.
Proof.
apply equiv_dist=> n. revert PROPn Hcn PROPn' Hcn' PROPn'' Hcn''
PROP Hc PROP' Hc' PROP'' Hc'' gn1 gn2 g1 g2 p.
induction (lt_wf n) as [n _ IH]=> PROPn ? PROPn' ? PROPn'' ?
PROP ? PROP' ? PROP'' ? gn1 gn2 g1 g2 p /=.
destruct (proto_case p) as [->|(a & c & ->)]; [by rewrite !proto_map_end|].
rewrite !proto_map_message /=. apply proto_message_ne=> // v p' /=.
do 3 f_equiv. apply Next_contractive; dist_later_intro as n' Hn'; simpl; auto.
pattern p. apply proto_ind.
{ intros p1 p2 Hp H'. rewrite -Hp. done. }
{ rewrite !proto_map_end. done. }
intros a m p' Hp Hp'.
rewrite !proto_map_union. f_equiv.
{ rewrite !proto_map_message /=. apply proto_message_ne=> // v p'' /=. do 3 f_equiv.
apply Next_contractive; dist_later_intro as n' Hn'; auto. }
done.
Qed.
Program Definition protoOF (V : Type) (Fn F : oFunctor)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment