Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
Actris
Commits
43f07f05
Commit
43f07f05
authored
1 month ago
by
Jonas Kastberg
Browse files
Options
Downloads
Patches
Plain Diff
WIP: Lifting proto_model to a map of protocols
parent
316a5108
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
multris/channel/proto_model.v
+154
-79
154 additions, 79 deletions
multris/channel/proto_model.v
with
154 additions
and
79 deletions
multris/channel/proto_model.v
+
154
−
79
View file @
43f07f05
...
...
@@ -34,6 +34,8 @@ The defined functions on the type [proto] are:
a given protocol.
- [proto_app], which appends two protocols [p1] and [p2], by substituting
all terminations [END] in [p1] with [p2]. *)
From
stdpp
Require
Import
gmap
.
From
iris
.
algebra
Require
Import
gmap
.
From
iris
.
base_logic
Require
Import
base_logic
.
From
iris
.
proofmode
Require
Import
proofmode
.
From
multris
.
utils
Require
Import
cofe_solver_2
.
...
...
@@ -41,19 +43,30 @@ Set Default Proof Using "Type".
Module
Export
action
.
Inductive
tag
:=
Send
|
Recv
.
Canonical
Structure
tagO
:=
leibnizO
tag
.
Global
Instance
tag_decidable
:
EqDecision
tag
.
Proof
.
solve_decision
.
Qed
.
Global
Program
Instance
tag_countable
:
Countable
tag
:=
{|
encode
t
:=
match
t
with
|
Send
=>
1
%
positive
|
Recv
=>
2
%
positive
end
;
decode
p
:=
Some
match
p
return
tag
with
1
%
positive
=>
Send
|
_
=>
Recv
end
|}
.
Next
Obligation
.
by
intros
[]
.
Qed
.
Definition
action
:
Set
:=
tag
*
nat
.
Global
Instance
action_inhabited
:
Inhabited
action
:=
populate
(
Send
,
0
)
.
Canonical
Structure
actionO
:=
leibnizO
action
.
Global
Instance
action_countable
:
Countable
action
.
Proof
.
unfold
action
.
apply
prod_countable
.
Qed
.
Definition
action_dual
(
a
:
action
)
:
action
:=
match
a
with
(
Send
,
n
)
=>
(
Recv
,
n
)
|
(
Recv
,
n
)
=>
(
Send
,
n
)
end
.
Global
Instance
action_dual_involutive
:
Involutive
(
=
)
action_dual
.
Proof
.
by
intros
[[]]
.
Qed
.
Canonical
Structure
actionO
:=
leibnizO
action
.
End
action
.
Definition
proto_auxO
(
V
:
Type
)
(
PROP
:
ofe
)
(
A
:
ofe
)
:
ofe
:=
optionO
(
prod
O
actionO
(
V
-
d
>
laterO
A
-
n
>
PROP
))
.
(
gmap
O
actionO
(
V
-
d
>
laterO
A
-
n
>
PROP
))
.
Definition
proto_auxOF
(
V
:
Type
)
(
PROP
:
ofe
)
:
oFunctor
:=
option
OF
(
actionO
*
(
V
-
d
>
▶
∙
-
n
>
PROP
))
.
(
gmap
OF
actionO
(
(
V
-
d
>
▶
∙
-
n
>
PROP
))
)
.
Definition
proto_result
(
V
:
Type
)
:=
result_2
(
proto_auxOF
V
)
.
Definition
proto
(
V
:
Type
)
(
PROPn
PROP
:
ofe
)
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
ofe
:=
...
...
@@ -77,30 +90,95 @@ Lemma proto_unfold_fold {V} `{!Cofe PROPn, !Cofe PROP}
Proof
.
apply
(
ofe_iso_21
proto_iso
)
.
Qed
.
Definition
proto_end
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
proto
V
PROPn
PROP
:=
proto_fold
None
.
proto_fold
∅
.
Definition
proto_message
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
a
:
action
)
(
m
:
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
:
proto
V
PROPn
PROP
:=
proto_fold
(
Some
(
a
,
m
))
.
proto_fold
{[
a
:=
m
]}
.
Definition
proto_union
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
p1
p2
:
proto
V
PROPn
PROP
)
:
proto
V
PROPn
PROP
:=
proto_fold
(
map_union
(
proto_unfold
p1
)
(
proto_unfold
p2
))
.
Global
Instance
proto_message_ne
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
n
:
Proper
(
pointwise_relation
V
(
dist
n
)
==>
dist
n
)
(
proto_message
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
)
.
Proof
.
intros
c1
c2
Hc
.
rewrite
/
proto_message
.
f_equiv
.
by
repeat
constructor
.
Qed
.
Proof
.
intros
c1
c2
Hc
.
rewrite
/
proto_message
.
f_equiv
.
by
apply
insert_ne
.
Qed
.
(* TODO: Why does unification algorithm fail here? *)
Global
Instance
proto_message_proper
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
:
Proper
(
pointwise_relation
V
(
≡
)
==>
(
≡
))
(
proto_message
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
)
.
Proof
.
intros
c1
c2
Hc
.
rewrite
/
proto_message
.
f_equiv
.
by
repeat
constructo
r
.
Qed
.
Proof
.
intros
c1
c2
Hc
.
rewrite
/
proto_message
.
f_equiv
.
by
apply
:
insert_prope
r
.
Qed
.
Lemma
proto_case
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
p
:
proto
V
PROPn
PROP
)
:
p
≡
proto_end
∨
∃
a
m
,
p
≡
proto_message
a
m
.
Global
Instance
proto_union_ne
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
n
:
Proper
((
dist
n
)
==>
(
dist
n
)
==>
dist
n
)
(
proto_union
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
))
.
Proof
.
destruct
(
proto_unfold
p
)
as
[[
a
m
]|]
eqn
:
E
;
simpl
in
*
;
last
first
.
-
left
.
by
rewrite
-
(
proto_fold_unfold
p
)
E
.
-
right
.
exists
a
,
m
.
by
rewrite
/
proto_message
-
E
proto_fold_unfold
.
intros
p11
p12
Hp1
p21
p22
Hp2
.
rewrite
/
proto_union
.
by
do
3
f_equiv
.
Qed
.
(* TODO: Why does unification algorithm fail here? *)
Global
Instance
proto_union_proper
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
(
proto_union
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
))
.
Proof
.
intros
p11
p12
Hp1
p21
p22
Hp2
.
rewrite
/
proto_union
.
f_equiv
.
(* TODO: Proper stuff *)
Admitted
.
(* Should hold in the same way map_ind holds *)
Lemma
proto_ind
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
(
P
:
proto
V
PROPn
PROP
→
Prop
)
:
Proper
((
≡
)
==>
impl
)
P
→
P
proto_end
→
(
∀
i
x
p
,
proto_unfold
p
!!
i
≡
None
→
P
p
→
P
(
proto_union
(
proto_message
i
x
)
p
))
→
∀
m
,
P
m
.
Proof
.
intros
HP
?
Hins
m'
.
assert
(
∃
m
,
m
=
proto_unfold
m'
)
as
[
m
Hm
]
.
{
eexists
_
.
done
.
}
revert
Hm
.
revert
m'
.
induction
(
map_wf
m
)
as
[
m
_
IH
]
.
intros
m'
Hm
.
destruct
(
map_choose_or_empty
m
)
as
[(
i
&
x
&
?)|
H'
]
.
{
assert
(
m'
=
proto_union
(
proto_message
i
x
)
(
proto_fold
(
delete
i
(
proto_unfold
m'
))))
.
{
admit
.
}
rewrite
H1
.
apply
Hins
.
{
admit
.
}
(* TODO Map lookup proper stuff *)
eapply
IH
;
[|
done
]
.
admit
.
(* TODO: Proper subset stuff *)
}
rewrite
/
proto_end
in
H
.
subst
.
rewrite
-
H'
in
H
.
rewrite
-
(
proto_fold_unfold
m'
)
.
done
.
Admitted
.
Global
Instance
proto_inhabited
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
:
Inhabited
(
proto
V
PROPn
PROP
)
:=
populate
proto_end
.
(* Derived laws *)
Section
internal_eq_derived
.
Context
{
PROP
:
bi
}
`{
!
BiInternalEq
PROP
}
.
Implicit
Types
P
:
PROP
.
(* Force implicit argument PROP *)
Notation
"P ⊢ Q"
:=
(
P
⊢@
{
PROP
}
Q
)
.
Notation
"P ⊣⊢ Q"
:=
(
P
⊣⊢@
{
PROP
}
Q
)
.
Lemma
gmap_equivI
`{
Countable
K
}
{
A
:
ofe
}
(
m1
m2
:
gmap
K
A
)
:
m1
≡
m2
⊣⊢
∀
i
,
m1
!!
i
≡
m2
!!
i
.
Proof
.
Admitted
.
Lemma
gmap_union_equiv_eqI
`{
Countable
K
}
{
A
:
ofe
}
(
m
m1
m2
:
gmap
K
A
)
:
m
≡
m1
∪
m2
⊣⊢
∃
m1'
m2'
,
⌜
m
=
m1'
∪
m2'
⌝
∧
m1'
≡
m1
∧
m2'
≡
m2
.
Proof
.
Admitted
.
Lemma
gmap_singleton_equivI
`{
Countable
K
}
{
A
:
ofe
}
(
k1
k2
:
K
)
(
a1
a2
:
A
)
:
{[
k1
:=
a1
]}
≡
{[
k2
:=
a2
]}
⊣⊢
⌜
k1
=
k2
⌝
∧
a1
≡
a2
.
Proof
.
Admitted
.
End
internal_eq_derived
.
Lemma
proto_message_equivI
`{
!
BiInternalEq
SPROP
}
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a1
a2
m1
m2
:
proto_message
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a1
m1
≡
proto_message
a2
m2
⊣⊢@
{
SPROP
}
⌜
a1
=
a2
⌝
∧
(
∀
v
p'
,
m1
v
p'
≡
m2
v
p'
)
.
...
...
@@ -110,79 +188,52 @@ Proof.
-
iIntros
"Heq"
.
by
iRewrite
"Heq"
.
-
iIntros
"Heq"
.
rewrite
-
{
2
}(
proto_fold_unfold
(
proto_message
_
_))
.
iRewrite
"Heq"
.
by
rewrite
proto_fold_unfold
.
}
rewrite
/
proto_message
!
proto_unfold_fold
option_equivI
prod_equivI
/=.
rewrite
discrete_eq
discrete_fun_equivI
.
rewrite
/
proto_message
!
proto_unfold_fold
.
rewrite
gmap_singleton_equivI
/=.
rewrite
discrete_fun_equivI
.
by
setoid_rewrite
ofe_morO_equivI
.
Qed
.
Lemma
proto_message_end_equivI
`{
!
BiInternalEq
SPROP
}
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
m
:
proto_message
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
m
≡
proto_end
⊢@
{
SPROP
}
False
.
Proof
.
trans
(
proto_unfold
(
proto_message
a
m
)
≡
proto_unfold
proto_end
:
SPROP
)
%
I
.
{
iIntros
"Heq"
.
by
iRewrite
"Heq"
.
}
by
rewrite
/
proto_message
!
proto_unfold_fold
option_equivI
.
Qed
.
{
iIntros
"Heq"
.
by
iRewrite
"Heq"
.
}
rewrite
/
proto_message
!
proto_unfold_fold
.
rewrite
gmap_equivI
.
Admitted
.
Lemma
proto_end_message_equivI
`{
!
BiInternalEq
SPROP
}
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
a
m
:
proto_end
≡
proto_message
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
a
m
⊢@
{
SPROP
}
False
.
Proof
.
by
rewrite
internal_eq_sym
proto_message_end_equivI
.
Qed
.
(** The eliminator [proto_elim x f p] is only well-behaved if the function [f]
is contractive *)
Definition
proto_elim
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
}
(
x
:
A
)
(
f
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
(
p
:
proto
V
PROPn
PROP
)
:
A
:=
match
proto_unfold
p
with
None
=>
x
|
Some
(
a
,
m
)
=>
f
a
m
end
.
Lemma
proto_elim_ne
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
:
ofe
}
(
x
:
A
)
(
f1
f2
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
p1
p2
n
:
(
∀
a
m1
m2
,
(
∀
v
,
m1
v
≡
{
n
}
≡
m2
v
)
→
f1
a
m1
≡
{
n
}
≡
f2
a
m2
)
→
p1
≡
{
n
}
≡
p2
→
proto_elim
x
f1
p1
≡
{
n
}
≡
proto_elim
x
f2
p2
.
Proof
.
intros
Hf
Hp
.
rewrite
/
proto_elim
.
apply
(_
:
NonExpansive
proto_unfold
)
in
Hp
as
[[
a1
m1
]
[
a2
m2
]
[
->
?]|];
simplify_eq
/=
;
[|
done
]
.
apply
Hf
.
destruct
n
;
by
simpl
.
Qed
.
Lemma
proto_elim_end
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
:
ofe
}
(
x
:
A
)
(
f
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
:
proto_elim
x
f
proto_end
≡
x
.
Proof
.
rewrite
/
proto_elim
/
proto_end
.
pose
proof
(
proto_unfold_fold
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
None
)
as
Hfold
.
by
destruct
(
proto_unfold
(
proto_fold
None
))
as
[[??]|]
eqn
:
E
;
inversion
Hfold
.
Qed
.
Lemma
proto_elim_message
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROP
}
{
A
:
ofe
}
(
x
:
A
)
(
f
:
action
→
(
V
→
laterO
(
proto
V
PROP
PROPn
)
-
n
>
PROP
)
→
A
)
`{
Hf
:
∀
a
,
Proper
(
pointwise_relation
_
(
≡
)
==>
(
≡
))
(
f
a
)}
a
m
:
proto_elim
x
f
(
proto_message
a
m
)
≡
f
a
m
.
Proof
.
rewrite
/
proto_elim
/
proto_message
/=.
pose
proof
(
proto_unfold_fold
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
(
Some
(
a
,
m
)))
as
Hfold
.
destruct
(
proto_unfold
(
proto_fold
(
Some
(
a
,
m
))))
as
[[??]|]
eqn
:
E
;
inversion
Hfold
as
[??
[
Ha
Hc
]|];
simplify_eq
/=.
by
f_equiv
=>
v
.
Qed
.
(** Functor *)
Program
Definition
proto_map_aux
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
(
g
:
PROP
-
n
>
PROP'
)
(
rec
:
proto
V
PROP'
PROPn'
-
n
>
proto
V
PROP
PROPn
)
:
proto
V
PROPn
PROP
-
n
>
proto
V
PROPn'
PROP'
:=
λ
ne
p
,
proto_elim
proto_end
(
λ
a
m
,
proto_message
a
(
λ
v
,
g
◎
m
v
◎
laterO_map
rec
))
p
.
(* fmap (λ (m:proto V PROPn PROP), (λ v, g ◎ m v ◎ laterO_map rec)) (proto_unfold p). *)
(* proto_fold $ gmap_fmap _ _ (λ m, (λ v, g ◎ m v ◎ laterO_map rec)) (proto_unfold p). *)
proto_fold
$
fmap
(
λ
m
,
(
λ
v
,
g
◎
m
v
◎
laterO_map
rec
))
(
proto_unfold
p
)
.
Next
Obligation
.
intros
V
PROPn
?
PROPn'
?
PROP
?
PROP'
?
g
rec
n
p1
p2
Hp
.
apply
proto_elim_ne
=>
//
a
m1
m2
Hm
.
by
repeat
f_equiv
.
Qed
.
f_equiv
.
simpl
.
apply
(_
:
NonExpansive
proto_unfold
)
in
Hp
.
Admitted
.
(* TODO: Needs non expansiveness of fmap *)
(* (* Admitted. *) *)
(* apply map_fmap_ne. *)
(* apply gmap_fmap_ne_ext. *)
(* apply proto_elim_ne=> // a m1 m2 Hm. by repeat f_equiv. *)
(* Qed. *)
Global
Instance
proto_map_aux_contractive
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
(
g
:
PROP
-
n
>
PROP'
)
:
Contractive
(
proto_map_aux
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROPn'
:=
PROPn'
)
g
)
.
Proof
.
intros
n
rec1
rec2
Hrec
p
.
simpl
.
apply
proto_elim_ne
=>
//
a
m1
m2
Hm
.
f_equiv
=>
v
p'
/=.
do
2
f_equiv
;
[
done
|]
.
apply
Next_contractive
;
by
dist_later_intro
as
n'
Hn'
.
Qed
.
Proof
.
Admitted
.
(*
intros n rec1 rec2 Hrec p. simpl. apply proto_elim_ne=> // a m1 m2 Hm.
*)
(*
f_equiv=> v p' /=. do 2 f_equiv; [done|].
*)
(*
apply Next_contractive; by dist_later_intro as n' Hn'.
*)
(*
Qed.
*)
Definition
proto_map_aux_2
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
...
...
@@ -218,16 +269,24 @@ Qed.
Lemma
proto_map_end
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
(
gn
:
PROPn'
-
n
>
PROPn
)
(
g
:
PROP
-
n
>
PROP'
)
:
proto_map
(
V
:=
V
)
gn
g
proto_end
≡
proto_end
.
Proof
.
by
rewrite
proto_map_unfold
/
proto_map_aux
/=
proto_elim_end
.
Qed
.
Proof
.
rewrite
proto_map_unfold
/
proto_map_aux
/=.
pose
proof
(
proto_unfold_fold
(
V
:=
V
)
(
PROPn
:=
PROPn
)
(
PROP
:=
PROP
)
∅
)
as
Hfold
.
Admitted
.
Lemma
proto_map_message
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
(
gn
:
PROPn'
-
n
>
PROPn
)
(
g
:
PROP
-
n
>
PROP'
)
a
m
:
proto_map
(
V
:=
V
)
gn
g
(
proto_message
a
m
)
≡
proto_message
a
(
λ
v
,
g
◎
m
v
◎
laterO_map
(
proto_map
g
gn
))
.
Proof
.
rewrite
proto_map_unfold
/
proto_map_aux
/=.
rewrite
->
proto_elim_message
;
[
done
|]
.
intros
a'
m1
m2
Hm
.
f_equiv
;
solve_proper
.
Qed
.
Admitted
.
Lemma
proto_map_union
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
(
gn
:
PROPn'
-
n
>
PROPn
)
(
g
:
PROP
-
n
>
PROP'
)
p1
p2
:
proto_map
(
V
:=
V
)
gn
g
(
proto_union
p1
p2
)
≡
proto_union
(
proto_map
gn
g
p1
)
(
proto_map
gn
g
p2
)
.
Proof
.
rewrite
proto_map_unfold
/
proto_map_aux
/=.
Admitted
.
Lemma
proto_map_ne
{
V
}
`{
Hcn
:
!
Cofe
PROPn
,
Hcn'
:
!
Cofe
PROPn'
,
Hc
:
!
Cofe
PROP
,
Hc'
:
!
Cofe
PROP'
}
...
...
@@ -237,11 +296,17 @@ Lemma proto_map_ne {V}
Proof
.
revert
PROPn
Hcn
PROPn'
Hcn'
PROP
Hc
PROP'
Hc'
gn1
gn2
g1
g2
p
.
induction
(
lt_wf
n
)
as
[
n
_
IH
]=>
PROPn
?
PROPn'
?
PROP
?
PROP'
?
gn1
gn2
g1
g2
p
Hgn
Hg
/=.
destruct
(
proto_case
p
)
as
[
->
|(
a
&
m
&
->
)];
[
by
rewrite
!
proto_map_end
|]
.
PROPn
?
PROPn'
?
PROP
?
PROP'
?
gn1
gn2
g1
g2
p
Hgn
Hg
/=.
pattern
p
.
apply
proto_ind
.
{
intros
p1
p2
Hp
H'
.
rewrite
-
Hp
.
done
.
}
{
rewrite
!
proto_map_end
.
done
.
}
intros
a
m
p'
Hp
Hp'
.
rewrite
!
proto_map_union
.
rewrite
!
proto_map_message
/=.
apply
proto_message_ne
=>
//
v
p'
/=.
f_equiv
;
[
done
|]
.
f_equiv
.
apply
Next_contractive
;
dist_later_intro
as
n'
Hn'
;
eauto
using
dist_le
with
lia
.
apply
proto_union_ne
.
{
apply
proto_message_ne
=>
//
v
p''
/=.
f_equiv
;
[
done
|]
.
f_equiv
.
apply
Next_contractive
;
dist_later_intro
as
n'
Hn'
;
eauto
using
dist_le
with
lia
.
}
done
.
Qed
.
Lemma
proto_map_ext
{
V
}
`{
!
Cofe
PROPn
,
!
Cofe
PROPn'
,
!
Cofe
PROP
,
!
Cofe
PROP'
}
(
gn1
gn2
:
PROPn'
-
n
>
PROPn
)
(
g1
g2
:
PROP
-
n
>
PROP'
)
p
:
...
...
@@ -255,9 +320,14 @@ Lemma proto_map_id {V} `{Hcn:!Cofe PROPn, Hc:!Cofe PROP} (p : proto V PROPn PROP
Proof
.
apply
equiv_dist
=>
n
.
revert
PROPn
Hcn
PROP
Hc
p
.
induction
(
lt_wf
n
)
as
[
n
_
IH
]=>
PROPn
?
PROP
?
p
/=.
destruct
(
proto_case
p
)
as
[
->
|(
a
&
m
&
->
)];
[
by
rewrite
!
proto_map_end
|]
.
rewrite
!
proto_map_message
/=.
apply
proto_message_ne
=>
//
v
p'
/=.
f_equiv
.
apply
Next_contractive
;
dist_later_intro
as
n'
Hn'
;
auto
.
pattern
p
.
apply
proto_ind
.
{
intros
p1
p2
Hp
H'
.
rewrite
-
Hp
.
done
.
}
{
rewrite
!
proto_map_end
.
done
.
}
intros
a
m
p'
Hp
Hp'
.
rewrite
proto_map_union
.
f_equiv
.
{
rewrite
!
proto_map_message
/=.
apply
proto_message_ne
=>
//
v
p''
/=.
f_equiv
.
apply
Next_contractive
;
dist_later_intro
as
n'
Hn'
;
auto
.
}
done
.
Qed
.
Lemma
proto_map_compose
{
V
}
`{
Hcn
:
!
Cofe
PROPn
,
Hcn'
:
!
Cofe
PROPn'
,
Hcn''
:
!
Cofe
PROPn''
,
...
...
@@ -265,14 +335,19 @@ Lemma proto_map_compose {V}
(
gn1
:
PROPn''
-
n
>
PROPn'
)
(
gn2
:
PROPn'
-
n
>
PROPn
)
(
g1
:
PROP
-
n
>
PROP'
)
(
g2
:
PROP'
-
n
>
PROP''
)
(
p
:
proto
V
PROPn
PROP
)
:
proto_map
(
gn2
◎
gn1
)
(
g2
◎
g1
)
p
≡
proto_map
gn1
g2
(
proto_map
gn2
g1
p
)
.
Proof
.
Proof
.
apply
equiv_dist
=>
n
.
revert
PROPn
Hcn
PROPn'
Hcn'
PROPn''
Hcn''
PROP
Hc
PROP'
Hc'
PROP''
Hc''
gn1
gn2
g1
g2
p
.
induction
(
lt_wf
n
)
as
[
n
_
IH
]=>
PROPn
?
PROPn'
?
PROPn''
?
PROP
?
PROP'
?
PROP''
?
gn1
gn2
g1
g2
p
/=.
destruct
(
proto_case
p
)
as
[
->
|(
a
&
c
&
->
)];
[
by
rewrite
!
proto_map_end
|]
.
rewrite
!
proto_map_message
/=.
apply
proto_message_ne
=>
//
v
p'
/=.
do
3
f_equiv
.
apply
Next_contractive
;
dist_later_intro
as
n'
Hn'
;
simpl
;
auto
.
pattern
p
.
apply
proto_ind
.
{
intros
p1
p2
Hp
H'
.
rewrite
-
Hp
.
done
.
}
{
rewrite
!
proto_map_end
.
done
.
}
intros
a
m
p'
Hp
Hp'
.
rewrite
!
proto_map_union
.
f_equiv
.
{
rewrite
!
proto_map_message
/=.
apply
proto_message_ne
=>
//
v
p''
/=.
do
3
f_equiv
.
apply
Next_contractive
;
dist_later_intro
as
n'
Hn'
;
auto
.
}
done
.
Qed
.
Program
Definition
protoOF
(
V
:
Type
)
(
Fn
F
:
oFunctor
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment