Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Hugo Herbelin
iris-coq
Commits
f8e693e7
Commit
f8e693e7
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Some uPred style consistency tweaks.
parent
99968b53
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/upred.v
+5
-11
5 additions, 11 deletions
algebra/upred.v
with
5 additions
and
11 deletions
algebra/upred.v
+
5
−
11
View file @
f8e693e7
...
...
@@ -398,7 +398,7 @@ Proof. intros ->; apply or_intro_r. Qed.
Lemma
exist_intro'
{
A
}
P
(
Ψ
:
A
→
uPred
M
)
a
:
P
⊑
Ψ
a
→
P
⊑
(
∃
a
,
Ψ
a
)
.
Proof
.
intros
->
;
apply
exist_intro
.
Qed
.
Lemma
forall_elim'
{
A
}
P
(
Ψ
:
A
→
uPred
M
)
:
P
⊑
(
∀
a
,
Ψ
a
)
→
(
∀
a
,
P
⊑
Ψ
a
)
.
Proof
.
move
=>
EQ
?
.
rewrite
EQ
.
by
apply
forall_elim
.
Qed
.
Proof
.
move
=>
HP
a
.
by
rewrite
HP
forall_elim
.
Qed
.
Hint
Resolve
or_elim
or_intro_l'
or_intro_r'
.
Hint
Resolve
and_intro
and_elim_l'
and_elim_r'
.
...
...
@@ -532,14 +532,12 @@ Proof.
rewrite
-
(
comm
_
P
)
and_exist_l
.
apply
exist_proper
=>
a
.
by
rewrite
comm
.
Qed
.
Lemma
const_intro_l
φ
Q
R
:
φ
→
(
■
φ
∧
Q
)
⊑
R
→
Q
⊑
R
.
Lemma
const_intro_l
φ
Q
R
:
φ
→
(
■
φ
∧
Q
)
⊑
R
→
Q
⊑
R
.
Proof
.
intros
?
<-
;
auto
using
const_intro
.
Qed
.
Lemma
const_intro_r
φ
Q
R
:
φ
→
(
Q
∧
■
φ
)
⊑
R
→
Q
⊑
R
.
Lemma
const_intro_r
φ
Q
R
:
φ
→
(
Q
∧
■
φ
)
⊑
R
→
Q
⊑
R
.
Proof
.
intros
?
<-
;
auto
using
const_intro
.
Qed
.
Lemma
const_intro_impl
φ
Q
R
:
φ
→
Q
⊑
(
■
φ
→
R
)
→
Q
⊑
R
.
Proof
.
intros
?
->
;
apply
(
const_intro_l
φ
);
first
done
.
by
rewrite
impl_elim_r
.
Qed
.
Proof
.
intros
?
->
.
eauto
using
const_intro_l
,
impl_elim_r
.
Qed
.
Lemma
const_elim_l
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
■
φ
∧
Q
)
⊑
R
.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
Lemma
const_elim_r
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
Q
∧
■
φ
)
⊑
R
.
...
...
@@ -549,11 +547,7 @@ Proof. intros; apply (anti_symm _); auto using const_intro. Qed.
Lemma
equiv_eq
{
A
:
cofeT
}
P
(
a
b
:
A
)
:
a
≡
b
→
P
⊑
(
a
≡
b
)
.
Proof
.
intros
->
;
apply
eq_refl
.
Qed
.
Lemma
eq_sym
{
A
:
cofeT
}
(
a
b
:
A
)
:
(
a
≡
b
)
⊑
(
b
≡
a
)
.
Proof
.
apply
(
eq_rewrite
a
b
(
λ
b
,
b
≡
a
)
%
I
);
auto
using
eq_refl
.
intros
n
;
solve_proper
.
Qed
.
Proof
.
apply
(
eq_rewrite
a
b
(
λ
b
,
b
≡
a
)
%
I
);
auto
using
eq_refl
.
solve_ne
.
Qed
.
(* BI connectives *)
Lemma
sep_mono
P
P'
Q
Q'
:
P
⊑
Q
→
P'
⊑
Q'
→
(
P
★
P'
)
⊑
(
Q
★
Q'
)
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment