Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Hai Dang
Iris
Commits
b150317d
Commit
b150317d
authored
6 years ago
by
Hai Dang
Browse files
Options
Downloads
Patches
Plain Diff
Fix merge with master
parent
a3224e12
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/heap_lang/proph_map.v
+0
-175
0 additions, 175 deletions
theories/heap_lang/proph_map.v
with
0 additions
and
175 deletions
theories/heap_lang/proph_map.v
deleted
100644 → 0
+
0
−
175
View file @
a3224e12
From
iris
.
algebra
Require
Import
excl
auth
gmap
.
From
iris
.
base_logic
.
lib
Require
Export
own
.
From
iris
.
proofmode
Require
Import
tactics
.
Set
Default
Proof
Using
"Type"
.
Import
uPred
.
Definition
proph_map
(
P
V
:
Type
)
`{
Countable
P
}
:=
gmap
P
(
option
V
)
.
Definition
proph_val_list
(
P
V
:
Type
)
:=
list
(
P
*
V
)
.
Definition
proph_mapUR
(
P
V
:
Type
)
`{
Countable
P
}
:
ucmraT
:=
gmapUR
P
$
exclR
$
optionC
$
leibnizC
V
.
Definition
to_proph_map
{
P
V
}
`{
Countable
P
}
(
pvs
:
proph_map
P
V
)
:
proph_mapUR
P
V
:=
fmap
(
λ
v
,
Excl
(
v
:
option
(
leibnizC
V
)))
pvs
.
(** The CMRA we need. *)
Class
proph_mapG
(
P
V
:
Type
)
(
Σ
:
gFunctors
)
`{
Countable
P
}
:=
ProphMapG
{
proph_map_inG
:>
inG
Σ
(
authR
(
proph_mapUR
P
V
));
proph_map_name
:
gname
}
.
Arguments
proph_map_name
{_
_
_
_
_}
_
:
assert
.
Class
proph_mapPreG
(
P
V
:
Type
)
(
Σ
:
gFunctors
)
`{
Countable
P
}
:=
{
proph_map_preG_inG
:>
inG
Σ
(
authR
(
proph_mapUR
P
V
))
}
.
Definition
proph_mapΣ
(
P
V
:
Type
)
`{
Countable
P
}
:
gFunctors
:=
#
[
GFunctor
(
authR
(
proph_mapUR
P
V
))]
.
Instance
subG_proph_mapPreG
{
Σ
P
V
}
`{
Countable
P
}
:
subG
(
proph_mapΣ
P
V
)
Σ
→
proph_mapPreG
P
V
Σ
.
Proof
.
solve_inG
.
Qed
.
Section
definitions
.
Context
`{
Countable
P
,
pG
:
!
proph_mapG
P
V
Σ
}
.
(** The first resolve for [p] in [pvs] *)
Definition
first_resolve
(
pvs
:
proph_val_list
P
V
)
(
p
:
P
)
:
option
V
:=
(
list_to_map
pvs
:
gmap
P
V
)
!!
p
.
Definition
first_resolve_in_list
(
R
:
proph_map
P
V
)
(
pvs
:
proph_val_list
P
V
)
:=
∀
p
v
,
p
∈
dom
(
gset
_)
R
→
first_resolve
pvs
p
=
Some
v
→
R
!!
p
=
Some
(
Some
v
)
.
Definition
proph_map_auth
(
R
:
proph_map
P
V
)
:
iProp
Σ
:=
own
(
proph_map_name
pG
)
(
●
(
to_proph_map
R
))
.
Definition
proph_map_ctx
(
pvs
:
proph_val_list
P
V
)
(
ps
:
gset
P
)
:
iProp
Σ
:=
(
∃
R
,
⌜
first_resolve_in_list
R
pvs
∧
dom
(
gset
_)
R
⊆
ps
⌝
∗
proph_map_auth
R
)
%
I
.
Definition
proph_def
(
p
:
P
)
(
v
:
option
V
)
:
iProp
Σ
:=
own
(
proph_map_name
pG
)
(
◯
{[
p
:=
Excl
(
v
:
option
$
leibnizC
V
)
]})
.
Definition
proph_aux
:
seal
(
@
proph_def
)
.
by
eexists
.
Qed
.
Definition
proph
:=
proph_aux
.(
unseal
)
.
Definition
proph_eq
:
@
proph
=
@
proph_def
:=
proph_aux
.(
seal_eq
)
.
End
definitions
.
Section
first_resolve
.
Context
{
P
V
:
Type
}
`{
Countable
P
}
.
Implicit
Type
pvs
:
proph_val_list
P
V
.
Implicit
Type
p
:
P
.
Implicit
Type
v
:
V
.
Implicit
Type
R
:
proph_map
P
V
.
Lemma
first_resolve_insert
pvs
p
R
:
first_resolve_in_list
R
pvs
→
p
∉
dom
(
gset
_)
R
→
first_resolve_in_list
(
<
[
p
:=
first_resolve
pvs
p
]
>
R
)
pvs
.
Proof
.
intros
Hf
Hnotin
p'
v'
Hp'
.
rewrite
(
dom_insert_L
R
p
)
in
Hp'
.
erewrite
elem_of_union
in
Hp'
.
destruct
Hp'
as
[
->%
elem_of_singleton
|
Hin
]
.
-
intros
->
.
by
rewrite
lookup_insert
.
-
intros
<-%
Hf
;
last
done
.
rewrite
lookup_insert_ne
;
first
done
.
intros
?
.
subst
.
done
.
Qed
.
Lemma
first_resolve_delete
pvs
p
v
R
:
first_resolve_in_list
R
((
p
,
v
)
::
pvs
)
→
first_resolve_in_list
(
delete
p
R
)
pvs
.
Proof
.
intros
Hfr
p'
v'
Hpin
Heq
.
rewrite
dom_delete_L
in
Hpin
.
rewrite
/
first_resolve
in
Heq
.
apply
elem_of_difference
in
Hpin
as
[
Hpin
Hne
%
not_elem_of_singleton
]
.
erewrite
<-
lookup_insert_ne
in
Heq
;
last
done
.
rewrite
lookup_delete_ne
;
eauto
.
Qed
.
Lemma
first_resolve_eq
R
p
v
w
pvs
:
first_resolve_in_list
R
((
p
,
v
)
::
pvs
)
→
R
!!
p
=
Some
w
→
w
=
Some
v
.
Proof
.
intros
Hfr
Hlookup
.
specialize
(
Hfr
p
v
(
elem_of_dom_2
_
_
_
Hlookup
))
.
rewrite
/
first_resolve
lookup_insert
in
Hfr
.
rewrite
Hfr
in
Hlookup
;
last
done
.
inversion
Hlookup
.
done
.
Qed
.
End
first_resolve
.
Section
to_proph_map
.
Context
(
P
V
:
Type
)
`{
Countable
P
}
.
Implicit
Types
p
:
P
.
Implicit
Types
R
:
proph_map
P
V
.
Lemma
to_proph_map_valid
R
:
✓
to_proph_map
R
.
Proof
.
intros
l
.
rewrite
lookup_fmap
.
by
case
(
R
!!
l
)
.
Qed
.
Lemma
to_proph_map_insert
p
v
R
:
to_proph_map
(
<
[
p
:=
v
]
>
R
)
=
<
[
p
:=
Excl
(
v
:
option
(
leibnizC
V
))]
>
(
to_proph_map
R
)
.
Proof
.
by
rewrite
/
to_proph_map
fmap_insert
.
Qed
.
Lemma
to_proph_map_delete
p
R
:
to_proph_map
(
delete
p
R
)
=
delete
p
(
to_proph_map
R
)
.
Proof
.
by
rewrite
/
to_proph_map
fmap_delete
.
Qed
.
Lemma
lookup_to_proph_map_None
R
p
:
R
!!
p
=
None
→
to_proph_map
R
!!
p
=
None
.
Proof
.
by
rewrite
/
to_proph_map
lookup_fmap
=>
->
.
Qed
.
Lemma
proph_map_singleton_included
R
p
v
:
{[
p
:=
Excl
v
]}
≼
to_proph_map
R
→
R
!!
p
=
Some
v
.
Proof
.
rewrite
singleton_included_exclusive
;
last
by
apply
to_proph_map_valid
.
by
rewrite
leibniz_equiv_iff
/
to_proph_map
lookup_fmap
fmap_Some
=>
-
[
v'
[
->
[
->
]]]
.
Qed
.
End
to_proph_map
.
Lemma
proph_map_init
`{
Countable
P
,
!
proph_mapPreG
P
V
PVS
}
pvs
ps
:
(|
==>
∃
_
:
proph_mapG
P
V
PVS
,
proph_map_ctx
pvs
ps
)
%
I
.
Proof
.
iMod
(
own_alloc
(
●
to_proph_map
∅
))
as
(
γ
)
"Hh"
.
{
rewrite
-
auth_auth_valid
.
exact
:
to_proph_map_valid
.
}
iModIntro
.
iExists
(
ProphMapG
P
V
PVS
_
_
_
γ
),
∅.
iSplit
;
last
by
iFrame
.
iPureIntro
.
split
=>
//.
Qed
.
Section
proph_map
.
Context
`{
Countable
P
,
!
proph_mapG
P
V
Σ
}
.
Implicit
Types
p
:
P
.
Implicit
Types
v
:
option
V
.
Implicit
Types
R
:
proph_map
P
V
.
(** General properties of mapsto *)
Global
Instance
proph_timeless
p
v
:
Timeless
(
proph
p
v
)
.
Proof
.
rewrite
proph_eq
/
proph_def
.
apply
_
.
Qed
.
Lemma
proph_map_alloc
R
p
v
:
p
∉
dom
(
gset
_)
R
→
proph_map_auth
R
==∗
proph_map_auth
(
<
[
p
:=
v
]
>
R
)
∗
proph
p
v
.
Proof
.
iIntros
(
Hp
)
"HR"
.
rewrite
/
proph_map_ctx
proph_eq
/
proph_def
.
iMod
(
own_update
with
"HR"
)
as
"[HR Hl]"
.
{
eapply
auth_update_alloc
,
(
alloc_singleton_local_update
_
_
(
Excl
$
(
v
:
option
(
leibnizC
_))))=>
//.
apply
lookup_to_proph_map_None
.
apply
(
iffLR
(
not_elem_of_dom
_
_)
Hp
)
.
}
iModIntro
.
rewrite
/
proph_map_auth
to_proph_map_insert
.
iFrame
.
Qed
.
Lemma
proph_map_remove
R
p
v
:
proph_map_auth
R
-∗
proph
p
v
==∗
proph_map_auth
(
delete
p
R
)
.
Proof
.
iIntros
"HR Hp"
.
rewrite
/
proph_map_ctx
proph_eq
/
proph_def
.
rewrite
/
proph_map_auth
to_proph_map_delete
.
iApply
(
own_update_2
with
"HR Hp"
)
.
apply
auth_update_dealloc
,
(
delete_singleton_local_update
_
_
_)
.
Qed
.
Lemma
proph_map_valid
R
p
v
:
proph_map_auth
R
-∗
proph
p
v
-∗
⌜
R
!!
p
=
Some
v
⌝.
Proof
.
iIntros
"HR Hp"
.
rewrite
/
proph_map_ctx
proph_eq
/
proph_def
.
iDestruct
(
own_valid_2
with
"HR Hp"
)
as
%
[
HH
%
proph_map_singleton_included
_]
%
auth_valid_discrete_2
;
auto
.
Qed
.
End
proph_map
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment