Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
George Pirlea
Iris
Commits
2ccdb104
Commit
2ccdb104
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Basic properties of frame preserving updates and those for products.
parent
4882ecf8
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modures/cmra.v
+22
-4
22 additions, 4 deletions
modures/cmra.v
with
22 additions
and
4 deletions
modures/cmra.v
+
22
−
4
View file @
2ccdb104
...
@@ -318,6 +318,15 @@ Proof.
...
@@ -318,6 +318,15 @@ Proof.
*
by
intros
Hx
z
?;
exists
y
;
split
;
[
done
|
apply
(
Hx
z
)]
.
*
by
intros
Hx
z
?;
exists
y
;
split
;
[
done
|
apply
(
Hx
z
)]
.
*
by
intros
Hx
z
n
?;
destruct
(
Hx
z
n
)
as
(?
&
<-
&
?)
.
*
by
intros
Hx
z
n
?;
destruct
(
Hx
z
n
)
as
(?
&
<-
&
?)
.
Qed
.
Qed
.
Lemma
ra_updateP_id
(
P
:
A
→
Prop
)
x
:
P
x
→
x
⇝:
P
.
Proof
.
by
intros
?
z
n
?;
exists
x
.
Qed
.
Lemma
ra_updateP_compose
(
P
Q
:
A
→
Prop
)
x
:
x
⇝:
P
→
(
∀
y
,
P
y
→
y
⇝:
Q
)
→
x
⇝:
Q
.
Proof
.
intros
Hx
Hy
z
n
?
.
destruct
(
Hx
z
n
)
as
(
y
&
?
&
?);
auto
.
by
apply
(
Hy
y
)
.
Qed
.
Lemma
ra_updateP_weaken
(
P
Q
:
A
→
Prop
)
x
:
x
⇝:
P
→
(
∀
y
,
P
y
→
Q
y
)
→
x
⇝:
Q
.
Proof
.
eauto
using
ra_updateP_compose
,
ra_updateP_id
.
Qed
.
End
cmra
.
End
cmra
.
Hint
Extern
0
(_
≼
{
0
}
_)
=>
apply
cmra_includedN_0
.
Hint
Extern
0
(_
≼
{
0
}
_)
=>
apply
cmra_includedN_0
.
...
@@ -384,14 +393,14 @@ Section discrete.
...
@@ -384,14 +393,14 @@ Section discrete.
Qed
.
Qed
.
Definition
discreteRA
:
cmraT
:=
Definition
discreteRA
:
cmraT
:=
CMRAT
(
cofe_mixin
A
)
discrete_cmra_mixin
discrete_extend_mixin
.
CMRAT
(
cofe_mixin
A
)
discrete_cmra_mixin
discrete_extend_mixin
.
Lemma
discrete_updateP
(
x
:
A
)
(
P
:
A
→
Prop
)
`{
!
Inhabited
(
sig
P
)}
:
Lemma
discrete_updateP
(
x
:
discreteR
A
)
(
P
:
A
→
Prop
)
`{
!
Inhabited
(
sig
P
)}
:
(
∀
z
,
✓
(
x
⋅
z
)
→
∃
y
,
P
y
∧
✓
(
y
⋅
z
))
→
(
x
:
discreteRA
)
⇝:
P
.
(
∀
z
,
✓
(
x
⋅
z
)
→
∃
y
,
P
y
∧
✓
(
y
⋅
z
))
→
x
⇝:
P
.
Proof
.
Proof
.
intros
Hvalid
z
[|
n
];
[|
apply
Hvalid
]
.
intros
Hvalid
z
[|
n
];
[|
apply
Hvalid
]
.
by
destruct
(_
:
Inhabited
(
sig
P
))
as
[[
y
?]];
exists
y
.
by
destruct
(_
:
Inhabited
(
sig
P
))
as
[[
y
?]];
exists
y
.
Qed
.
Qed
.
Lemma
discrete_update
(
x
y
:
A
)
:
Lemma
discrete_update
(
x
y
:
discreteR
A
)
:
(
∀
z
,
✓
(
x
⋅
z
)
→
✓
(
y
⋅
z
))
→
(
x
:
discreteRA
)
⇝
y
.
(
∀
z
,
✓
(
x
⋅
z
)
→
✓
(
y
⋅
z
))
→
x
⇝
y
.
Proof
.
intros
Hvalid
z
[|
n
];
[
done
|
apply
Hvalid
]
.
Qed
.
Proof
.
intros
Hvalid
z
[|
n
];
[
done
|
apply
Hvalid
]
.
Qed
.
End
discrete
.
End
discrete
.
...
@@ -465,6 +474,15 @@ Section prod.
...
@@ -465,6 +474,15 @@ Section prod.
*
by
split
;
rewrite
/=
left_id
.
*
by
split
;
rewrite
/=
left_id
.
*
by
intros
?
[??];
split
;
apply
(
timeless
_)
.
*
by
intros
?
[??];
split
;
apply
(
timeless
_)
.
Qed
.
Qed
.
Lemma
prod_update
x
y
:
x
.
1
⇝
y
.
1
→
x
.
2
⇝
y
.
2
→
x
⇝
y
.
Proof
.
intros
??
z
n
[??];
split
;
simpl
in
*
;
auto
.
Qed
.
Lemma
prod_updateP
(
P
:
A
*
B
→
Prop
)
P1
P2
x
:
x
.
1
⇝:
P1
→
x
.
2
⇝:
P2
→
(
∀
y
,
P1
(
y
.
1
)
→
P2
(
y
.
2
)
→
P
y
)
→
x
⇝:
P
.
Proof
.
intros
Hx1
Hx2
HP
z
n
[??];
simpl
in
*.
destruct
(
Hx1
(
z
.
1
)
n
)
as
(
a
&
?
&
?),
(
Hx2
(
z
.
2
)
n
)
as
(
b
&
?
&
?);
auto
.
exists
(
a
,
b
);
repeat
split
;
auto
.
Qed
.
End
prod
.
End
prod
.
Arguments
prodRA
:
clear
implicits
.
Arguments
prodRA
:
clear
implicits
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment