Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
George Pirlea
Iris
Commits
12fbd3c1
Commit
12fbd3c1
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Plain Diff
Merge branch 'v2.0' of gitlab.mpi-sws.org:FP/iris-coq into v2.0
parents
2a0a559e
22f45db6
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
barrier/heap_lang.v
+0
-26
0 additions, 26 deletions
barrier/heap_lang.v
barrier/heap_lang_tactics.v
+0
-4
0 additions, 4 deletions
barrier/heap_lang_tactics.v
barrier/lifting.v
+12
-53
12 additions, 53 deletions
barrier/lifting.v
iris/lifting.v
+35
-0
35 additions, 0 deletions
iris/lifting.v
with
47 additions
and
83 deletions
barrier/heap_lang.v
+
0
−
26
View file @
12fbd3c1
...
...
@@ -184,9 +184,6 @@ Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
σ
!!
l
=
Some
v1
→
head_step
(
Cas
(
Loc
l
)
e1
e2
)
σ
LitTrue
(
<
[
l
:=
v2
]
>
σ
)
None
.
Definition
head_reducible
e
σ
:
Prop
:=
∃
e'
σ'
ef
,
head_step
e
σ
e'
σ'
ef
.
(** Atomic expressions *)
Definition
atomic
(
e
:
expr
)
:=
match
e
with
...
...
@@ -293,21 +290,6 @@ Proof.
eauto
using
fill_item_inj
,
values_head_stuck
,
fill_not_val
.
Qed
.
Lemma
prim_head_step
e1
σ1
e2
σ2
ef
:
head_reducible
e1
σ1
→
prim_step
e1
σ1
e2
σ2
ef
→
head_step
e1
σ1
e2
σ2
ef
.
Proof
.
intros
(
e2''
&
σ2''
&
ef''
&
Hstep''
)
[
K'
e1'
e2'
Heq1
Heq2
Hstep
]
.
assert
(
K'
`
prefix_of
`
[])
as
Hemp
.
{
eapply
step_by_val
;
last
first
.
-
eexact
Hstep''
.
-
eapply
values_head_stuck
.
eexact
Hstep
.
-
done
.
}
destruct
K'
;
last
by
(
exfalso
;
eapply
prefix_of_nil_not
;
eassumption
)
.
by
subst
e1
e2
.
Qed
.
Lemma
alloc_fresh
e
v
σ
:
let
l
:=
fresh
(
dom
_
σ
)
in
to_val
e
=
Some
v
→
head_step
(
Alloc
e
)
σ
(
Loc
l
)
(
<
[
l
:=
v
]
>
σ
)
None
.
...
...
@@ -339,11 +321,3 @@ Proof.
exists
(
fill
K'
e2''
);
rewrite
heap_lang
.
fill_app
;
split
;
auto
.
econstructor
;
eauto
.
Qed
.
Lemma
head_reducible_reducible
e
σ
:
heap_lang
.
head_reducible
e
σ
→
reducible
e
σ
.
Proof
.
intros
H
.
destruct
H
;
destruct_conjs
.
do
3
eexists
.
eapply
heap_lang
.
Ectx_step
with
(
K
:=[]);
last
eassumption
;
done
.
Qed
.
This diff is collapsed.
Click to expand it.
barrier/heap_lang_tactics.v
+
0
−
4
View file @
12fbd3c1
...
...
@@ -62,7 +62,6 @@ Ltac reshape_expr e tac :=
Ltac
do_step
tac
:=
try
match
goal
with
|
-
language
.
reducible
_
_
=>
eexists
_,
_,
_
end
;
try
match
goal
with
|
-
head_reducible
_
_
=>
eexists
_,
_,
_
end
;
simpl
;
match
goal
with
|
|
-
prim_step
?e1
?σ1
?e2
?σ2
?ef
=>
...
...
@@ -70,7 +69,4 @@ Ltac do_step tac :=
eapply
Ectx_step
with
K
e1'
_);
[
reflexivity
|
reflexivity
|];
first
[
apply
alloc_fresh
|
econstructor
];
rewrite
?to_of_val
;
tac
;
fail
|
|
-
head_step
?e1
?σ1
?e2
?σ2
?ef
=>
first
[
apply
alloc_fresh
|
econstructor
];
rewrite
?to_of_val
;
tac
;
fail
end
.
This diff is collapsed.
Click to expand it.
barrier/lifting.v
+
12
−
53
View file @
12fbd3c1
...
...
@@ -3,7 +3,6 @@ Require Export iris.weakestpre barrier.heap_lang_tactics.
Import
uPred
.
Import
heap_lang
.
Local
Hint
Extern
0
(
language
.
reducible
_
_)
=>
do_step
ltac
:(
eauto
2
)
.
Local
Hint
Extern
0
(
head_reducible
_
_)
=>
do_step
ltac
:(
eauto
2
)
.
Section
lifting
.
Context
{
Σ
:
iFunctor
}
.
...
...
@@ -24,7 +23,7 @@ Lemma wp_alloc_pst E σ e v Q :
Proof
.
intros
;
set
(
φ
e'
σ'
ef
:=
∃
l
,
e'
=
Loc
l
∧
σ'
=
<
[
l
:=
v
]
>
σ
∧
σ
!!
l
=
None
∧
ef
=
(
None
:
option
expr
))
.
rewrite
-
(
wp_lift_step
E
E
φ
_
_
σ
)
//
/
φ
;
last
(
by
intros
;
inv_step
;
eauto
)
.
rewrite
-
(
wp_lift_step
E
E
φ
_
_
σ
)
//
/
φ
;
last
(
by
intros
;
inv_step
;
eauto
)
;
[]
.
rewrite
-
pvs_intro
.
apply
sep_mono
,
later_mono
;
first
done
.
apply
forall_intro
=>
e2
;
apply
forall_intro
=>
σ2
;
apply
forall_intro
=>
ef
.
apply
wand_intro_l
.
...
...
@@ -34,26 +33,6 @@ Proof.
by
rewrite
left_id
wand_elim_r
-
wp_value'
.
Qed
.
Lemma
wp_lift_atomic_det_step
{
E
Q
e1
}
σ1
v2
σ2
:
to_val
e1
=
None
→
head_reducible
e1
σ1
→
(
∀
e'
σ'
ef
,
head_step
e1
σ1
e'
σ'
ef
→
ef
=
None
∧
e'
=
of_val
v2
∧
σ'
=
σ2
)
→
(
ownP
σ1
★
▷
(
ownP
σ2
-★
Q
v2
))
⊑
wp
E
e1
Q
.
Proof
.
intros
He
Hsafe
Hstep
.
rewrite
-
(
wp_lift_step
E
E
(
λ
e'
σ'
ef
,
ef
=
None
∧
e'
=
of_val
v2
∧
σ'
=
σ2
)
_
e1
σ1
)
//
;
eauto
using
prim_head_step
,
head_reducible_reducible
.
rewrite
-
pvs_intro
.
apply
sep_mono
,
later_mono
;
first
done
.
apply
forall_intro
=>
e2'
;
apply
forall_intro
=>
σ2'
.
apply
forall_intro
=>
ef
;
apply
wand_intro_l
.
rewrite
always_and_sep_l'
-
associative
-
always_and_sep_l'
.
apply
const_elim_l
=>
-
[
->
[
->
->
]]
/=.
rewrite
-
pvs_intro
right_id
-
wp_value
.
by
rewrite
wand_elim_r
.
Qed
.
Lemma
wp_load_pst
E
σ
l
v
Q
:
σ
!!
l
=
Some
v
→
(
ownP
σ
★
▷
(
ownP
σ
-★
Q
v
))
⊑
wp
E
(
Load
(
Loc
l
))
Q
.
...
...
@@ -100,33 +79,19 @@ Proof.
by
rewrite
-
wp_value'
//
;
apply
const_intro
.
Qed
.
Lemma
wp_lift_pure_step
E
(
φ
:
expr
→
Prop
)
Q
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
reducible
e1
σ1
)
→
(
∀
σ1
e2
σ2
ef
,
prim_step
e1
σ1
e2
σ2
ef
→
σ1
=
σ2
∧
ef
=
None
∧
φ
e2
)
→
(
▷
∀
e2
,
■
φ
e2
→
wp
E
e2
Q
)
⊑
wp
E
e1
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_pure_step
E
(
λ
e'
ef
,
ef
=
None
∧
φ
e'
))
//=.
apply
later_mono
,
forall_mono
=>
e2
;
apply
forall_intro
=>
ef
.
apply
impl_intro_l
,
const_elim_l
=>
-
[
->
?]
/=.
by
rewrite
const_equiv
//
left_id
right_id
.
Qed
.
Lemma
wp_rec
E
ef
e
v
Q
:
to_val
e
=
Some
v
→
▷
wp
E
ef
.[
Rec
ef
,
e
/
]
Q
⊑
wp
E
(
App
(
Rec
ef
)
e
)
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_pure_step
E
(
λ
e'
,
e'
=
ef
.[
Rec
ef
,
e
/
])
Q
(
App
(
Rec
ef
)
e
))
//=
;
last
by
intros
;
inv_step
;
eauto
.
by
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
intros
;
rewrite
-
(
wp_lift_pure_det_step
(
App
_
_)
ef
.[
Rec
ef
,
e
/
])
//=
;
last
by
intros
;
inv_step
;
eauto
.
Qed
.
Lemma
wp_plus
E
n1
n2
Q
:
▷
Q
(
LitNatV
(
n1
+
n2
))
⊑
wp
E
(
Plus
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
Proof
.
rewrite
-
(
wp_lift_pure_
step
E
(
λ
e'
,
e'
=
LitNat
(
n1
+
n2
)))
//=
;
rewrite
-
(
wp_lift_pure_
det_step
(
Plus
_
_)
(
LitNat
(
n1
+
n2
)))
//=
;
last
by
intros
;
inv_step
;
eauto
.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
...
...
@@ -134,9 +99,8 @@ Lemma wp_le_true E n1 n2 Q :
n1
≤
n2
→
▷
Q
LitTrueV
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_pure_step
E
(
λ
e'
,
e'
=
LitTrue
)
)
//=
;
intros
;
rewrite
-
(
wp_lift_pure_
det_
step
(
Le
_
_)
LitTrue
)
//=
;
last
by
intros
;
inv_step
;
eauto
with
lia
.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
...
...
@@ -144,9 +108,8 @@ Lemma wp_le_false E n1 n2 Q :
n1
>
n2
→
▷
Q
LitFalseV
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_pure_step
E
(
λ
e'
,
e'
=
LitFalse
)
)
//=
;
intros
;
rewrite
-
(
wp_lift_pure_
det_
step
(
Le
_
_)
LitFalse
)
//=
;
last
by
intros
;
inv_step
;
eauto
with
lia
.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
...
...
@@ -154,9 +117,8 @@ Lemma wp_fst E e1 v1 e2 v2 Q :
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
▷
Q
v1
⊑
wp
E
(
Fst
(
Pair
e1
e2
))
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_pure_
step
E
(
λ
e'
,
e'
=
e1
)
)
//=
;
intros
;
rewrite
-
(
wp_lift_pure_
det_step
(
Fst
_)
e1
)
//=
;
last
by
intros
;
inv_step
;
eauto
.
apply
later_mono
,
forall_intro
=>
e2'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
...
...
@@ -164,9 +126,8 @@ Lemma wp_snd E e1 v1 e2 v2 Q :
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
▷
Q
v2
⊑
wp
E
(
Snd
(
Pair
e1
e2
))
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_pure_
step
E
(
λ
e'
,
e'
=
e2
)
)
//=
;
intros
;
rewrite
-
(
wp_lift_pure_
det_step
(
Snd
_)
e2
)
//=
;
last
by
intros
;
inv_step
;
eauto
.
apply
later_mono
,
forall_intro
=>
e2'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
...
...
@@ -174,18 +135,16 @@ Lemma wp_case_inl E e0 v0 e1 e2 Q :
to_val
e0
=
Some
v0
→
▷
wp
E
e1
.[
e0
/
]
Q
⊑
wp
E
(
Case
(
InjL
e0
)
e1
e2
)
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_pure_step
E
(
λ
e'
,
e'
=
e1
.[
e0
/
])
_
(
Case
(
InjL
e0
)
e1
e2
))
//=
;
last
by
intros
;
inv_step
;
eauto
.
by
apply
later_mono
,
forall_intro
=>
e1'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
intros
;
rewrite
-
(
wp_lift_pure_det_step
(
Case
_
_
_)
e1
.[
e0
/
])
//=
;
last
by
intros
;
inv_step
;
eauto
.
Qed
.
Lemma
wp_case_inr
E
e0
v0
e1
e2
Q
:
to_val
e0
=
Some
v0
→
▷
wp
E
e2
.[
e0
/
]
Q
⊑
wp
E
(
Case
(
InjR
e0
)
e1
e2
)
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_pure_step
E
(
λ
e'
,
e'
=
e2
.[
e0
/
])
_
(
Case
(
InjR
e0
)
e1
e2
))
//=
;
last
by
intros
;
inv_step
;
eauto
.
by
apply
later_mono
,
forall_intro
=>
e1'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
intros
;
rewrite
-
(
wp_lift_pure_det_step
(
Case
_
_
_)
e2
.[
e0
/
])
//=
;
last
by
intros
;
inv_step
;
eauto
.
Qed
.
(** Some derived stateless axioms *)
...
...
This diff is collapsed.
Click to expand it.
iris/lifting.v
+
35
−
0
View file @
12fbd3c1
Require
Export
iris
.
weakestpre
.
Require
Import
iris
.
wsat
.
Import
uPred
.
Local
Hint
Extern
10
(_
≤
_)
=>
omega
.
Local
Hint
Extern
100
(
@
eq
coPset
_
_)
=>
solve_elem_of
.
Local
Hint
Extern
10
(
✓
{_}
_)
=>
...
...
@@ -36,6 +38,7 @@ Proof.
{
rewrite
(
commutative
_
r2
)
-
(
associative
_);
eauto
using
wsat_le
.
}
by
exists
r1'
,
r2'
;
split_ands
;
[|
|
by
intros
?
->
]
.
Qed
.
Lemma
wp_lift_pure_step
E
(
φ
:
expr
Λ
→
option
(
expr
Λ
)
→
Prop
)
Q
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
reducible
e1
σ1
)
→
...
...
@@ -50,4 +53,36 @@ Proof.
destruct
(
Hwp
e2
ef
r
k
)
as
(
r1
&
r2
&
Hr
&
?
&
?);
auto
;
[
by
destruct
k
|]
.
exists
r1
,
r2
;
split_ands
;
[
rewrite
-
Hr
|
|
by
intros
?
->
];
eauto
using
wsat_le
.
Qed
.
(** Derived lifting lemmas. *)
Lemma
wp_lift_atomic_det_step
{
E
Q
e1
}
σ1
v2
σ2
:
to_val
e1
=
None
→
reducible
e1
σ1
→
(
∀
e'
σ'
ef
,
prim_step
e1
σ1
e'
σ'
ef
→
ef
=
None
∧
e'
=
of_val
v2
∧
σ'
=
σ2
)
→
(
ownP
σ1
★
▷
(
ownP
σ2
-★
Q
v2
))
⊑
wp
E
e1
Q
.
Proof
.
intros
He
Hsafe
Hstep
.
rewrite
-
(
wp_lift_step
E
E
(
λ
e'
σ'
ef
,
ef
=
None
∧
e'
=
of_val
v2
∧
σ'
=
σ2
)
_
e1
σ1
)
//
;
[]
.
rewrite
-
pvs_intro
.
apply
sep_mono
,
later_mono
;
first
done
.
apply
forall_intro
=>
e2'
;
apply
forall_intro
=>
σ2'
.
apply
forall_intro
=>
ef
;
apply
wand_intro_l
.
rewrite
always_and_sep_l'
-
associative
-
always_and_sep_l'
.
apply
const_elim_l
=>
-
[
->
[
->
->
]]
/=.
rewrite
-
pvs_intro
right_id
-
wp_value
.
by
rewrite
wand_elim_r
.
Qed
.
Lemma
wp_lift_pure_det_step
{
E
Q
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ1
,
reducible
e1
σ1
)
→
(
∀
σ1
e'
σ'
ef
,
prim_step
e1
σ1
e'
σ'
ef
→
σ1
=
σ'
∧
ef
=
None
∧
e'
=
e2
)
→
(
▷
wp
E
e2
Q
)
⊑
wp
E
e1
Q
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_step
E
(
λ
e'
ef
,
ef
=
None
∧
e'
=
e2
)
_
e1
)
//=.
apply
later_mono
,
forall_intro
=>
e'
;
apply
forall_intro
=>
ef
.
apply
impl_intro_l
,
const_elim_l
=>
-
[
->
->
]
/=.
by
rewrite
right_id
.
Qed
.
End
lifting
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment