Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
George Pirlea
Iris
Commits
03ee69f3
Commit
03ee69f3
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Plain Diff
Merge branch 'v2.0' of gitlab.mpi-sws.org:FP/iris-coq into v2.0
parents
42cb296d
d885e2e5
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
modures/cmra.v
+26
-6
26 additions, 6 deletions
modures/cmra.v
modures/fin_maps.v
+29
-10
29 additions, 10 deletions
modures/fin_maps.v
modures/option.v
+4
-2
4 additions, 2 deletions
modures/option.v
with
59 additions
and
18 deletions
modures/cmra.v
+
26
−
6
View file @
03ee69f3
...
@@ -318,15 +318,32 @@ Proof.
...
@@ -318,15 +318,32 @@ Proof.
*
by
intros
Hx
z
?;
exists
y
;
split
;
[
done
|
apply
(
Hx
z
)]
.
*
by
intros
Hx
z
?;
exists
y
;
split
;
[
done
|
apply
(
Hx
z
)]
.
*
by
intros
Hx
z
n
?;
destruct
(
Hx
z
n
)
as
(?
&
<-
&
?)
.
*
by
intros
Hx
z
n
?;
destruct
(
Hx
z
n
)
as
(?
&
<-
&
?)
.
Qed
.
Qed
.
Lemma
ra_updateP_id
(
P
:
A
→
Prop
)
x
:
P
x
→
x
⇝:
P
.
Lemma
cm
ra_updateP_id
(
P
:
A
→
Prop
)
x
:
P
x
→
x
⇝:
P
.
Proof
.
by
intros
?
z
n
?;
exists
x
.
Qed
.
Proof
.
by
intros
?
z
n
?;
exists
x
.
Qed
.
Lemma
ra_updateP_compose
(
P
Q
:
A
→
Prop
)
x
:
Lemma
cm
ra_updateP_compose
(
P
Q
:
A
→
Prop
)
x
:
x
⇝:
P
→
(
∀
y
,
P
y
→
y
⇝:
Q
)
→
x
⇝:
Q
.
x
⇝:
P
→
(
∀
y
,
P
y
→
y
⇝:
Q
)
→
x
⇝:
Q
.
Proof
.
Proof
.
intros
Hx
Hy
z
n
?
.
destruct
(
Hx
z
n
)
as
(
y
&
?
&
?);
auto
.
by
apply
(
Hy
y
)
.
intros
Hx
Hy
z
n
?
.
destruct
(
Hx
z
n
)
as
(
y
&
?
&
?);
auto
.
by
apply
(
Hy
y
)
.
Qed
.
Qed
.
Lemma
ra_updateP_weaken
(
P
Q
:
A
→
Prop
)
x
:
x
⇝:
P
→
(
∀
y
,
P
y
→
Q
y
)
→
x
⇝:
Q
.
Lemma
cmra_updateP_weaken
(
P
Q
:
A
→
Prop
)
x
:
x
⇝:
P
→
(
∀
y
,
P
y
→
Q
y
)
→
x
⇝:
Q
.
Proof
.
eauto
using
ra_updateP_compose
,
ra_updateP_id
.
Qed
.
Proof
.
eauto
using
cmra_updateP_compose
,
cmra_updateP_id
.
Qed
.
Lemma
cmra_updateP_op
(
P1
P2
Q
:
A
→
Prop
)
x1
x2
:
x1
⇝:
P1
→
x2
⇝:
P2
→
(
∀
y1
y2
,
P1
y1
→
P2
y2
→
Q
(
y1
⋅
y2
))
→
x1
⋅
x2
⇝:
Q
.
Proof
.
intros
Hx1
Hx2
Hy
z
n
?
.
destruct
(
Hx1
(
x2
⋅
z
)
n
)
as
(
y1
&
?
&
?);
first
by
rewrite
associative
.
destruct
(
Hx2
(
y1
⋅
z
)
n
)
as
(
y2
&
?
&
?);
first
by
rewrite
associative
(
commutative
_
x2
)
-
associative
.
exists
(
y1
⋅
y2
);
split
;
last
rewrite
(
commutative
_
y1
)
-
associative
;
auto
.
Qed
.
Lemma
cmra_updateP_op'
(
P1
P2
:
A
→
Prop
)
x1
x2
:
x1
⇝:
P1
→
x2
⇝:
P2
→
x1
⋅
x2
⇝:
λ
y
,
∃
y1
y2
,
y
=
y1
⋅
y2
∧
P1
y1
∧
P2
y2
.
Proof
.
eauto
10
using
cmra_updateP_op
.
Qed
.
Lemma
cmra_update_op
x1
x2
y1
y2
:
x1
⇝
y1
→
x2
⇝
y2
→
x1
⋅
x2
⇝
y1
⋅
y2
.
Proof
.
rewrite
!
cmra_update_updateP
;
eauto
using
cmra_updateP_op
with
congruence
.
Qed
.
End
cmra
.
End
cmra
.
Hint
Extern
0
(_
≼
{
0
}
_)
=>
apply
cmra_includedN_0
.
Hint
Extern
0
(_
≼
{
0
}
_)
=>
apply
cmra_includedN_0
.
...
@@ -473,13 +490,16 @@ Section prod.
...
@@ -473,13 +490,16 @@ Section prod.
Qed
.
Qed
.
Lemma
prod_update
x
y
:
x
.
1
⇝
y
.
1
→
x
.
2
⇝
y
.
2
→
x
⇝
y
.
Lemma
prod_update
x
y
:
x
.
1
⇝
y
.
1
→
x
.
2
⇝
y
.
2
→
x
⇝
y
.
Proof
.
intros
??
z
n
[??];
split
;
simpl
in
*
;
auto
.
Qed
.
Proof
.
intros
??
z
n
[??];
split
;
simpl
in
*
;
auto
.
Qed
.
Lemma
prod_updateP
(
P
:
A
*
B
→
Prop
)
P1
P2
x
:
Lemma
prod_updateP
P
1
P2
(
Q
:
A
*
B
→
Prop
)
x
:
x
.
1
⇝:
P1
→
x
.
2
⇝:
P2
→
(
∀
a
b
,
P1
a
→
P2
b
→
P
(
a
,
b
))
→
x
⇝:
P
.
x
.
1
⇝:
P1
→
x
.
2
⇝:
P2
→
(
∀
a
b
,
P1
a
→
P2
b
→
Q
(
a
,
b
))
→
x
⇝:
Q
.
Proof
.
Proof
.
intros
Hx1
Hx2
HP
z
n
[??];
simpl
in
*.
intros
Hx1
Hx2
HP
z
n
[??];
simpl
in
*.
destruct
(
Hx1
(
z
.
1
)
n
)
as
(
a
&
?
&
?),
(
Hx2
(
z
.
2
)
n
)
as
(
b
&
?
&
?);
auto
.
destruct
(
Hx1
(
z
.
1
)
n
)
as
(
a
&
?
&
?),
(
Hx2
(
z
.
2
)
n
)
as
(
b
&
?
&
?);
auto
.
exists
(
a
,
b
);
repeat
split
;
auto
.
exists
(
a
,
b
);
repeat
split
;
auto
.
Qed
.
Qed
.
Lemma
prod_updateP'
P1
P2
x
:
x
.
1
⇝:
P1
→
x
.
2
⇝:
P2
→
x
⇝:
λ
y
,
P1
(
y
.
1
)
∧
P2
(
y
.
2
)
.
Proof
.
eauto
using
prod_updateP
.
Qed
.
End
prod
.
End
prod
.
Arguments
prodRA
:
clear
implicits
.
Arguments
prodRA
:
clear
implicits
.
...
...
This diff is collapsed.
Click to expand it.
modures/fin_maps.v
+
29
−
10
View file @
03ee69f3
...
@@ -164,7 +164,7 @@ Proof. by move=> /(_ i) Hm Hi; move:Hm; rewrite Hi. Qed.
...
@@ -164,7 +164,7 @@ Proof. by move=> /(_ i) Hm Hi; move:Hm; rewrite Hi. Qed.
Lemma
map_insert_validN
n
m
i
x
:
✓
{
n
}
x
→
✓
{
n
}
m
→
✓
{
n
}
(
<
[
i
:=
x
]
>
m
)
.
Lemma
map_insert_validN
n
m
i
x
:
✓
{
n
}
x
→
✓
{
n
}
m
→
✓
{
n
}
(
<
[
i
:=
x
]
>
m
)
.
Proof
.
by
intros
??
j
;
destruct
(
decide
(
i
=
j
));
simplify_map_equality
.
Qed
.
Proof
.
by
intros
??
j
;
destruct
(
decide
(
i
=
j
));
simplify_map_equality
.
Qed
.
Lemma
map_insert_op
m1
m2
i
x
:
Lemma
map_insert_op
m1
m2
i
x
:
m2
!!
i
=
None
→
<
[
i
:=
x
]
>
(
m1
⋅
m2
)
=
<
[
i
:=
x
]
>
m1
⋅
m2
.
m2
!!
i
=
None
→
<
[
i
:=
x
]
>
(
m1
⋅
m2
)
=
<
[
i
:=
x
]
>
m1
⋅
m2
.
Proof
.
by
intros
Hi
;
apply
(
insert_merge_l
_
m1
m2
);
rewrite
Hi
.
Qed
.
Proof
.
by
intros
Hi
;
apply
(
insert_merge_l
_
m1
m2
);
rewrite
Hi
.
Qed
.
Lemma
map_unit_singleton
(
i
:
K
)
(
x
:
A
)
:
Lemma
map_unit_singleton
(
i
:
K
)
(
x
:
A
)
:
unit
({[
i
↦
x
]}
:
gmap
K
A
)
=
{[
i
↦
unit
x
]}
.
unit
({[
i
↦
x
]}
:
gmap
K
A
)
=
{[
i
↦
unit
x
]}
.
...
@@ -185,26 +185,45 @@ Proof.
...
@@ -185,26 +185,45 @@ Proof.
+
by
rewrite
Hi
;
apply
Some_Some_includedN
,
cmra_included_includedN
.
+
by
rewrite
Hi
;
apply
Some_Some_includedN
,
cmra_included_includedN
.
+
apply
None_includedN
.
+
apply
None_includedN
.
Qed
.
Qed
.
Lemma
map_dom_op
(
m1
m2
:
gmap
K
A
)
:
Lemma
map_dom_op
m1
m2
:
dom
(
gset
K
)
(
m1
⋅
m2
)
≡
dom
_
m1
∪
dom
_
m2
.
dom
(
gset
K
)
(
m1
⋅
m2
)
≡
dom
_
m1
∪
dom
_
m2
.
Proof
.
Proof
.
apply
elem_of_equiv
;
intros
i
;
rewrite
elem_of_union
!
elem_of_dom
.
apply
elem_of_equiv
;
intros
i
;
rewrite
elem_of_union
!
elem_of_dom
.
unfold
is_Some
;
setoid_rewrite
lookup_op
.
unfold
is_Some
;
setoid_rewrite
lookup_op
.
destruct
(
m1
!!
i
),
(
m2
!!
i
);
naive_solver
.
destruct
(
m1
!!
i
),
(
m2
!!
i
);
naive_solver
.
Qed
.
Qed
.
Lemma
map_insert_updateP
(
P
:
A
→
Prop
)
(
Q
:
gmap
K
A
→
Prop
)
m
i
x
:
x
⇝:
P
→
(
∀
y
,
P
y
→
Q
(
<
[
i
:=
y
]
>
m
))
→
<
[
i
:=
x
]
>
m
⇝:
Q
.
Proof
.
intros
Hx
%
option_updateP'
HP
mf
n
Hm
.
destruct
(
Hx
(
mf
!!
i
)
n
)
as
([
y
|]
&
?
&
?);
try
done
.
{
by
generalize
(
Hm
i
);
rewrite
lookup_op
;
simplify_map_equality
.
}
exists
(
<
[
i
:=
y
]
>
m
);
split
;
first
by
auto
.
intros
j
;
move
:
(
Hm
j
)=>{
Hm
};
rewrite
!
lookup_op
=>
Hm
.
destruct
(
decide
(
i
=
j
));
simplify_map_equality'
;
auto
.
Qed
.
Lemma
map_insert_updateP'
(
P
:
A
→
Prop
)
(
Q
:
gmap
K
A
→
Prop
)
m
i
x
:
x
⇝:
P
→
<
[
i
:=
x
]
>
m
⇝:
λ
m'
,
∃
y
,
m'
=
<
[
i
:=
y
]
>
m
∧
P
y
.
Proof
.
eauto
using
map_insert_updateP
.
Qed
.
Lemma
map_insert_update
m
i
x
y
:
x
⇝
y
→
<
[
i
:=
x
]
>
m
⇝
<
[
i
:=
y
]
>
m
.
Proof
.
rewrite
!
cmra_update_updateP
;
eauto
using
map_insert_updateP
with
congruence
.
Qed
.
Context
`{
Fresh
K
(
gset
K
),
!
FreshSpec
K
(
gset
K
)}
.
Context
`{
Fresh
K
(
gset
K
),
!
FreshSpec
K
(
gset
K
)}
.
Lemma
map_update_alloc
(
m
:
gmap
K
A
)
x
:
Lemma
map_update
P
_alloc
(
Q
:
gmap
K
A
→
Prop
)
m
x
:
✓
x
→
m
⇝:
λ
m'
,
∃
i
,
m'
=
<
[
i
:=
x
]
>
m
∧
m
!!
i
=
None
.
✓
x
→
(
∀
i
,
m
!!
i
=
None
→
Q
(
<
[
i
:=
x
]
>
m
))
→
m
⇝:
Q
.
Proof
.
Proof
.
intros
?
mf
n
Hm
.
set
(
i
:=
fresh
(
dom
(
gset
K
)
(
m
⋅
mf
)))
.
intros
?
HQ
mf
n
Hm
.
set
(
i
:=
fresh
(
dom
(
gset
K
)
(
m
⋅
mf
)))
.
assert
(
i
∉
dom
(
gset
K
)
m
∧
i
∉
dom
(
gset
K
)
mf
)
as
[??]
.
assert
(
i
∉
dom
(
gset
K
)
m
∧
i
∉
dom
(
gset
K
)
mf
)
as
[??]
.
{
rewrite
-
not_elem_of_union
-
map_dom_op
;
apply
is_fresh
.
}
{
rewrite
-
not_elem_of_union
-
map_dom_op
;
apply
is_fresh
.
}
exists
(
<
[
i
:=
x
]
>
m
);
split
;
[
exists
i
;
split
;
[
done
|]|]
.
exists
(
<
[
i
:=
x
]
>
m
);
split
;
first
by
apply
HQ
,
not_elem_of_dom
.
*
by
apply
not_elem_of_dom
.
rewrite
-
map_insert_op
;
last
by
apply
not_elem_of_dom
.
*
rewrite
-
map_insert_op
;
last
by
apply
not_elem_of_dom
.
by
apply
map_insert_validN
;
[
apply
cmra_valid_validN
|]
.
by
apply
map_insert_validN
;
[
apply
cmra_valid_validN
|]
.
Qed
.
Qed
.
Lemma
map_updateP_alloc'
m
x
:
✓
x
→
m
⇝:
λ
m'
,
∃
i
,
m'
=
<
[
i
:=
x
]
>
m
∧
m
!!
i
=
None
.
Proof
.
eauto
using
map_updateP_alloc
.
Qed
.
End
properties
.
End
properties
.
Instance
map_fmap_ne
`{
Countable
K
}
{
A
B
:
cofeT
}
(
f
:
A
→
B
)
n
:
Instance
map_fmap_ne
`{
Countable
K
}
{
A
B
:
cofeT
}
(
f
:
A
→
B
)
n
:
...
...
This diff is collapsed.
Click to expand it.
modures/option.v
+
4
−
2
View file @
03ee69f3
...
@@ -147,10 +147,12 @@ Proof.
...
@@ -147,10 +147,12 @@ Proof.
destruct
(
Hx
(
unit
x
)
n
)
as
(
y'
&
?
&
?);
rewrite
?cmra_unit_r
;
auto
.
destruct
(
Hx
(
unit
x
)
n
)
as
(
y'
&
?
&
?);
rewrite
?cmra_unit_r
;
auto
.
by
exists
(
Some
y'
);
split
;
[
auto
|
apply
cmra_validN_op_l
with
(
unit
x
)]
.
by
exists
(
Some
y'
);
split
;
[
auto
|
apply
cmra_validN_op_l
with
(
unit
x
)]
.
Qed
.
Qed
.
Lemma
option_updateP'
(
P
:
A
→
Prop
)
x
:
x
⇝:
P
→
Some
x
⇝:
λ
y
,
default
False
y
P
.
Proof
.
eauto
using
option_updateP
.
Qed
.
Lemma
option_update
x
y
:
x
⇝
y
→
Some
x
⇝
Some
y
.
Lemma
option_update
x
y
:
x
⇝
y
→
Some
x
⇝
Some
y
.
Proof
.
Proof
.
intros
;
apply
cmra_update_updateP
,
(
option_updateP
(
y
=
));
[|
naive_solver
]
.
rewrite
!
cmra_update_updateP
;
eauto
using
option_updateP
with
congruence
.
by
apply
cmra_update_updateP
.
Qed
.
Qed
.
End
cmra
.
End
cmra
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment