Skip to content
Snippets Groups Projects
Commit d0131be5 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Generalize big_sepM_fn_insert and big_sepS_fn_insert.

parent 09b1563c
No related branches found
No related tags found
No related merge requests found
......@@ -188,10 +188,10 @@ Section gmap.
by rewrite -big_sepM_delete.
Qed.
Lemma big_sepM_fn_insert (Ψ : K A uPred M uPred M) (Φ : K uPred M) m i x P :
Lemma big_sepM_fn_insert {B} (Ψ : K A B uPred M) (f : K B) m i x b :
m !! i = None
([ map] ky <[i:=x]> m, Ψ k y (<[i:=P]> Φ k))
⊣⊢ (Ψ i x P [ map] ky m, Ψ k y (Φ k)).
([ map] ky <[i:=x]> m, Ψ k y (<[i:=b]> f k))
⊣⊢ (Ψ i x b [ map] ky m, Ψ k y (f k)).
Proof.
intros. rewrite big_sepM_insert // fn_lookup_insert.
apply sep_proper, big_sepM_proper; auto=> k y ??.
......@@ -301,10 +301,10 @@ Section gset.
Lemma big_sepS_insert Φ X x :
x X ([ set] y {[ x ]} X, Φ y) ⊣⊢ (Φ x [ set] y X, Φ y).
Proof. intros. by rewrite /uPred_big_sepS elements_union_singleton. Qed.
Lemma big_sepS_fn_insert (Ψ : A uPred M uPred M) Φ X x P :
Lemma big_sepS_fn_insert {B} (Ψ : A B uPred M) f X x b :
x X
([ set] y {[ x ]} X, Ψ y (<[x:=P]> Φ y))
⊣⊢ (Ψ x P [ set] y X, Ψ y (Φ y)).
([ set] y {[ x ]} X, Ψ y (<[x:=b]> f y))
⊣⊢ (Ψ x b [ set] y X, Ψ y (f y)).
Proof.
intros. rewrite big_sepS_insert // fn_lookup_insert.
apply sep_proper, big_sepS_proper; auto=> y ??.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment