Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
iris-coq
Commits
b761292e
Commit
b761292e
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
sts: define state in terms of states; prove states_fsa
parent
10de2067
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
program_logic/auth.v
+2
-2
2 additions, 2 deletions
program_logic/auth.v
program_logic/sts.v
+38
-8
38 additions, 8 deletions
program_logic/sts.v
with
40 additions
and
10 deletions
program_logic/auth.v
+
2
−
2
View file @
b761292e
...
...
@@ -108,7 +108,7 @@ Section auth.
P
⊑
fsa
E
Q
.
Proof
.
rewrite
/
auth_ctx
=>?
HN
Hinv
Hinner
.
eapply
(
inv_fsa
fsa
);
eauto
.
rewrite
Hinner
=>{
Hinner
Hinv
P
}
.
eapply
(
inv_fsa
fsa
);
eauto
.
rewrite
Hinner
=>{
Hinner
Hinv
P
HN
}
.
apply
wand_intro_l
.
rewrite
assoc
.
rewrite
(
auth_opened
(
E
∖
N
))
!
pvs_frame_r
!
sep_exist_r
.
apply
(
fsa_strip_pvs
fsa
).
apply
exist_elim
=>
a
'
.
...
...
@@ -116,7 +116,7 @@ Section auth.
(
*
Getting
this
wand
eliminated
is
really
annoying
.
*
)
rewrite
[(
■
_
★
_
)
%
I
]
comm
-!
assoc
[(
▷φ
_
★
_
★
_
)
%
I
]
assoc
[(
▷φ
_
★
_
)
%
I
]
comm
.
rewrite
wand_elim_r
fsa_frame_l
.
apply
(
fsa_mono_pvs
fsa
)
=>
b
.
apply
(
fsa_mono_pvs
fsa
)
=>
v
.
rewrite
sep_exist_l
;
apply
exist_elim
=>
L
.
rewrite
sep_exist_l
;
apply
exist_elim
=>
Lv
.
rewrite
sep_exist_l
;
apply
exist_elim
=>
?
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/sts.v
+
38
−
8
View file @
b761292e
...
...
@@ -28,10 +28,9 @@ Section definitions.
Definition
inv
(
φ
:
A
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:=
(
∃
s
,
own
i
γ
(
sts_auth
sts
.(
st
)
sts
.(
tok
)
s
∅
)
★
φ
s
)
%
I
.
Definition
states
(
S
:
set
A
)
(
T
:
set
B
)
:
iPropG
Λ
Σ
:=
(
■
closed
sts
.(
st
)
sts
.(
tok
)
S
T
∧
own
i
γ
(
sts_frag
sts
.(
st
)
sts
.(
tok
)
S
T
))
%
I
.
own
i
γ
(
sts_frag
sts
.(
st
)
sts
.(
tok
)
S
T
)
%
I
.
Definition
state
(
s
:
A
)
(
T
:
set
B
)
:
iPropG
Λ
Σ
:=
own
i
γ
(
sts_frag
sts
.(
st
)
sts
.(
tok
)
(
sts
.
up
sts
.(
st
)
sts
.(
tok
)
s
T
)
T
)
.
states
(
up
sts
.(
st
)
sts
.(
tok
)
s
T
)
T
.
Definition
ctx
(
N
:
namespace
)
(
φ
:
A
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:=
invariants
.
inv
N
(
inv
φ
).
End
definitions
.
...
...
@@ -69,15 +68,15 @@ Section sts.
Qed
.
Lemma
opened
E
γ
S
T
:
(
▷
inv
StsI
sts
γ
φ
★
own
StsI
γ
(
sts_frag
sts
.(
st
)
sts
.(
tok
)
S
T
)
)
(
▷
inv
StsI
sts
γ
φ
★
states
StsI
sts
γ
S
T
)
⊑
pvs
E
E
(
∃
s
,
■
(
s
∈
S
)
★
▷
φ
s
★
own
StsI
γ
(
sts_auth
sts
.(
st
)
sts
.(
tok
)
s
T
)).
Proof
.
rewrite
/
inv
.
rewrite
later_exist
sep_exist_r
.
apply
exist_elim
=>
s
.
rewrite
/
inv
/
states
.
rewrite
later_exist
sep_exist_r
.
apply
exist_elim
=>
s
.
rewrite
later_sep
pvs_timeless
!
pvs_frame_r
.
apply
pvs_mono
.
rewrite
-
(
exist_intro
s
).
rewrite
[(
_
★
▷φ
_
)
%
I
]
comm
-!
assoc
-
own_op
-
[(
▷φ
_
★
_
)
%
I
]
comm
.
rewrite
own_valid_l
discrete_validI
.
rewrite
-!
assoc
.
apply
const_elim_sep_l
=>-
[
?
[
Hcl
Hdisj
]].
simpl
in
Hdisj
,
Hcl
.
rewrite
-!
assoc
.
apply
const_elim_sep_l
=>-
[
_
[
Hcl
Hdisj
]].
simpl
in
Hdisj
,
Hcl
.
inversion_clear
Hdisj
.
rewrite
const_equiv
// left_id.
rewrite
comm
.
apply
sep_mono
;
first
done
.
apply
equiv_spec
,
own_proper
.
split
;
first
split
;
simpl
.
...
...
@@ -91,9 +90,9 @@ Section sts.
Lemma
closing
E
γ
s
T
s
'
S
'
T
'
:
step
sts
.(
st
)
sts
.(
tok
)
(
s
,
T
)
(
s
'
,
T
'
)
→
s
'
∈
S
'
→
closed
sts
.(
st
)
sts
.(
tok
)
S
'
T
'
→
(
▷
φ
s
'
★
own
StsI
γ
(
sts_auth
sts
.(
st
)
sts
.(
tok
)
s
T
))
⊑
pvs
E
E
(
▷
inv
StsI
sts
γ
φ
★
own
StsI
γ
(
sts_frag
sts
.(
st
)
sts
.(
tok
)
S
'
T
'
)
)
.
⊑
pvs
E
E
(
▷
inv
StsI
sts
γ
φ
★
states
StsI
sts
γ
S
'
T
'
).
Proof
.
intros
Hstep
Hin
Hcl
.
rewrite
/
inv
-
(
exist_intro
s
'
).
intros
Hstep
Hin
Hcl
.
rewrite
/
inv
/
states
-
(
exist_intro
s
'
).
rewrite
later_sep
[(
_
★
▷φ
_
)
%
I
]
comm
-
assoc
.
rewrite
-
pvs_frame_l
.
apply
sep_mono
;
first
done
.
rewrite
-
later_intro
.
...
...
@@ -108,6 +107,37 @@ Section sts.
-
intros
_.
constructor
.
solve_elem_of
-
.
Qed
.
Context
{
V
}
(
fsa
:
FSA
Λ
(
globalF
Σ
)
V
)
`
{!
FrameShiftAssertion
fsaV
fsa
}
.
Lemma
states_fsa
E
N
P
(
Q
:
V
→
iPropG
Λ
Σ
)
γ
S
T
S
'
T
'
:
fsaV
→
closed
sts
.(
st
)
sts
.(
tok
)
S
'
T
'
→
nclose
N
⊆
E
→
P
⊑
ctx
StsI
sts
γ
N
φ
→
P
⊑
(
states
StsI
sts
γ
S
T
★
∀
s
,
■
(
s
∈
S
)
★
▷
φ
s
-
★
fsa
(
E
∖
nclose
N
)
(
λ
x
,
∃
s
'
,
■
(
step
sts
.(
st
)
sts
.(
tok
)
(
s
,
T
)
(
s
'
,
T
'
)
∧
s
'
∈
S
'
)
★
▷
φ
s
'
★
(
states
StsI
sts
γ
S
'
T
'
-
★
Q
x
)))
→
P
⊑
fsa
E
Q
.
Proof
.
rewrite
/
ctx
=>?
Hcl
HN
Hinv
Hinner
.
eapply
(
inv_fsa
fsa
);
eauto
.
rewrite
Hinner
=>{
Hinner
Hinv
P
HN
}
.
apply
wand_intro_l
.
rewrite
assoc
.
rewrite
(
opened
(
E
∖
N
))
!
pvs_frame_r
!
sep_exist_r
.
apply
(
fsa_strip_pvs
fsa
).
apply
exist_elim
=>
s
.
rewrite
(
forall_elim
s
).
rewrite
[(
▷
_
★
_
)
%
I
]
comm
.
(
*
Getting
this
wand
eliminated
is
really
annoying
.
*
)
rewrite
[(
■
_
★
_
)
%
I
]
comm
-!
assoc
[(
▷φ
_
★
_
★
_
)
%
I
]
assoc
[(
▷φ
_
★
_
)
%
I
]
comm
.
rewrite
wand_elim_r
fsa_frame_l
.
apply
(
fsa_mono_pvs
fsa
)
=>
v
.
rewrite
sep_exist_l
;
apply
exist_elim
=>
s
'
.
rewrite
comm
-!
assoc
.
apply
const_elim_sep_l
=>-
[
Hstep
Hin
].
rewrite
assoc
[(
_
★
(
_
-
★
_
))
%
I
]
comm
-
assoc
.
rewrite
(
closing
(
E
∖
N
))
//; [].
rewrite
pvs_frame_l
.
apply
pvs_mono
.
by
rewrite
assoc
[(
_
★
▷
_
)
%
I
]
comm
-
assoc
wand_elim_l
.
Qed
.
End
sts
.
End
sts
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment