Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
iris-coq
Commits
672dff6d
Commit
672dff6d
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Use proper notations in saved_prop.
parent
efc8fb86
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
program_logic/saved_one_shot.v
+7
-9
7 additions, 9 deletions
program_logic/saved_one_shot.v
program_logic/saved_prop.v
+3
-3
3 additions, 3 deletions
program_logic/saved_prop.v
with
10 additions
and
12 deletions
program_logic/saved_one_shot.v
+
7
−
9
View file @
672dff6d
...
@@ -25,26 +25,24 @@ Section one_shot.
...
@@ -25,26 +25,24 @@ Section one_shot.
Global
Instance
ne_shot_own_persistent
γ
x
:
PersistentP
(
one_shot_own
γ
x
).
Global
Instance
ne_shot_own_persistent
γ
x
:
PersistentP
(
one_shot_own
γ
x
).
Proof
.
rewrite
/
one_shot_own
;
apply
_.
Qed
.
Proof
.
rewrite
/
one_shot_own
;
apply
_.
Qed
.
Lemma
one_shot_alloc_strong
N
(
G
:
gset
gname
)
:
Lemma
one_shot_alloc_strong
E
(
G
:
gset
gname
)
:
True
⊢
pvs
N
N
(
∃
γ
,
■
(
γ
∉
G
)
∧
one_shot_pending
γ
)
.
True
⊢
|={
E
}=>
∃
γ
,
■
(
γ
∉
G
)
∧
one_shot_pending
γ
.
Proof
.
by
apply
own_alloc_strong
.
Qed
.
Proof
.
by
apply
own_alloc_strong
.
Qed
.
Lemma
one_shot_alloc
N
:
True
⊢
pvs
N
N
(
∃
γ
,
one_shot_pending
γ
)
.
Lemma
one_shot_alloc
E
:
True
⊢
|={
E
}=>
∃
γ
,
one_shot_pending
γ
.
Proof
.
by
apply
own_alloc
.
Qed
.
Proof
.
by
apply
own_alloc
.
Qed
.
Lemma
one_shot_init
N
γ
x
:
Lemma
one_shot_init
E
γ
x
:
one_shot_pending
γ
⊢
|={
E
}=>
one_shot_own
γ
x
.
one_shot_pending
γ
⊢
pvs
N
N
(
one_shot_own
γ
x
).
Proof
.
by
apply
own_update
,
one_shot_update_shoot
.
Qed
.
Proof
.
by
apply
own_update
,
one_shot_update_shoot
.
Qed
.
Lemma
one_shot_alloc_init
N
x
:
True
⊢
pvs
N
N
(
∃
γ
,
one_shot_own
γ
x
)
.
Lemma
one_shot_alloc_init
E
x
:
True
⊢
|={
E
}=>
∃
γ
,
one_shot_own
γ
x
.
Proof
.
Proof
.
rewrite
(
one_shot_alloc
N
).
apply
pvs_strip_pvs
.
rewrite
(
one_shot_alloc
E
).
apply
pvs_strip_pvs
.
apply
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
γ
).
apply
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
γ
).
apply
one_shot_init
.
apply
one_shot_init
.
Qed
.
Qed
.
Lemma
one_shot_agree
γ
x
y
:
Lemma
one_shot_agree
γ
x
y
:
(
one_shot_own
γ
x
★
one_shot_own
γ
y
)
⊢
▷
(
x
≡
y
).
(
one_shot_own
γ
x
★
one_shot_own
γ
y
)
⊢
▷
(
x
≡
y
).
Proof
.
Proof
.
rewrite
-
own_op
own_valid
one_shot_validI
/=
agree_validI
.
rewrite
-
own_op
own_valid
one_shot_validI
/=
agree_validI
.
rewrite
agree_equivI
later_equivI
.
rewrite
agree_equivI
later_equivI
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/saved_prop.v
+
3
−
3
View file @
672dff6d
...
@@ -23,11 +23,11 @@ Section saved_prop.
...
@@ -23,11 +23,11 @@ Section saved_prop.
Global
Instance
saved_prop_persistent
γ
x
:
PersistentP
(
saved_prop_own
γ
x
).
Global
Instance
saved_prop_persistent
γ
x
:
PersistentP
(
saved_prop_own
γ
x
).
Proof
.
rewrite
/
saved_prop_own
;
apply
_.
Qed
.
Proof
.
rewrite
/
saved_prop_own
;
apply
_.
Qed
.
Lemma
saved_prop_alloc_strong
N
x
(
G
:
gset
gname
)
:
Lemma
saved_prop_alloc_strong
E
x
(
G
:
gset
gname
)
:
True
⊢
pvs
N
N
(
∃
γ
,
■
(
γ
∉
G
)
∧
saved_prop_own
γ
x
)
.
True
⊢
|={
E
}=>
∃
γ
,
■
(
γ
∉
G
)
∧
saved_prop_own
γ
x
.
Proof
.
by
apply
own_alloc_strong
.
Qed
.
Proof
.
by
apply
own_alloc_strong
.
Qed
.
Lemma
saved_prop_alloc
N
x
:
True
⊢
pvs
N
N
(
∃
γ
,
saved_prop_own
γ
x
)
.
Lemma
saved_prop_alloc
E
x
:
True
⊢
|={
E
}=>
∃
γ
,
saved_prop_own
γ
x
.
Proof
.
by
apply
own_alloc
.
Qed
.
Proof
.
by
apply
own_alloc
.
Qed
.
Lemma
saved_prop_agree
γ
x
y
:
Lemma
saved_prop_agree
γ
x
y
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment