Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
iris-coq
Commits
56f311a9
Verified
Commit
56f311a9
authored
6 years ago
by
Ralf Jung
Committed by
Rodolphe Lepigre
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
tweaks
parent
b16b9f33
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/heap_lang/proph_map.v
+14
-17
14 additions, 17 deletions
theories/heap_lang/proph_map.v
with
14 additions
and
17 deletions
theories/heap_lang/proph_map.v
+
14
−
17
View file @
56f311a9
...
...
@@ -4,7 +4,7 @@ From iris.proofmode Require Import tactics.
Set
Default
Proof
Using
"Type"
.
Import
uPred
.
Defini
tion
proph_map
(
P
V
:
Type
)
`
{
Countable
P
}
:=
gmap
P
(
list
V
).
Local
Nota
tion
proph_map
P
V
:=
(
gmap
P
(
list
V
)
)
.
Definition
proph_val_list
(
P
V
:
Type
)
:=
list
(
P
*
V
).
Definition
proph_mapUR
(
P
V
:
Type
)
`
{
Countable
P
}
:
ucmraT
:=
...
...
@@ -137,14 +137,13 @@ Section proph_map.
rewrite
proph_eq
/
proph_def
.
iMod
(
own_update
with
"H●"
)
as
"[H● H◯]"
.
{
eapply
auth_update_alloc
,
(
alloc_singleton_local_update
_
p
(
Excl
_
))
=>
//.
apply
lookup_to_proph_map_None
.
assert
(
p
∉
dom
(
gset
P
)
R
).
{
set_solver
.
}
apply
(
iffLR
(
not_elem_of_dom
_
_
)
H3
).
apply
lookup_to_proph_map_None
.
apply
(
not_elem_of_dom
(
D
:=
gset
P
)).
set_solver
.
}
iModIntro
.
iFrame
.
iExists
(
<
[
p
:=
list_resolves
pvs
p
]
>
R
).
iSplitR
"H●"
.
-
iPureIntro
.
split
.
+
apply
resolves_insert
.
exact
H1
.
set_solver
.
+
apply
resolves_insert
;
first
done
.
set_solver
.
+
rewrite
dom_insert
.
set_solver
.
-
unfold
to_proph_map
.
by
rewrite
fmap_insert
.
Qed
.
...
...
@@ -153,29 +152,27 @@ Section proph_map.
proph_map_ctx
((
p
,
v
)
::
pvs
)
ps
∗
proph
p
vs
==
∗
∃
vs
'
,
⌜
vs
=
v
::
vs
'⌝
∗
proph_map_ctx
pvs
ps
∗
proph
p
vs
'
.
Proof
.
iIntros
"[HR Hp]"
.
iDestruct
"HR"
as
(
R
)
"[
[% %] H●]"
.
iIntros
"[HR Hp]"
.
iDestruct
"HR"
as
(
R
)
"[
HP H●]"
.
iDestruct
"HP"
as
%
[
Hres
Hdom
]
.
rewrite
/
proph_map_ctx
proph_eq
/
proph_def
.
iDestruct
(
own_valid_2
with
"H● Hp"
)
as
%
[
HR
%
proph_map_singleton_included
_
]
%
auth_valid_discrete_2
.
assert
(
vs
=
v
::
list_resolves
pvs
p
).
{
rewrite
(
H
1
p
vs
HR
).
simpl
.
rewrite
decide_True
;
done
.
assert
(
vs
=
v
::
list_resolves
pvs
p
)
as
->
.
{
rewrite
(
H
res
p
vs
HR
).
simpl
.
rewrite
decide_True
;
done
.
}
SearchAbout
"own_update"
.
iMod
(
own_update_2
with
"H● Hp"
)
as
"[H● H◯]"
.
{
apply
auth_update
.
apply
(
singleton_local_update
(
to_proph_map
R
)
p
(
Excl
(
vs
:
list
(
leibnizC
V
)))
_
(
Excl
(
list_resolves
pvs
p
))
(
Excl
(
list_resolves
pvs
p
))).
eapply
auth_update
.
apply
:
singleton_local_update
.
-
unfold
to_proph_map
.
rewrite
lookup_fmap
.
rewrite
HR
.
done
.
-
apply
exclusive_local_update
.
done
.
-
apply
(
exclusive_local_update
_
(
Excl
(
list_resolves
pvs
p
:
list
(
leibnizC
V
))))
.
done
.
}
unfold
to_proph_map
.
rewrite
<-
fmap_insert
.
unfold
to_proph_map
.
rewrite
-
fmap_insert
.
iModIntro
.
iExists
(
list_resolves
pvs
p
).
iFrame
.
iSplitR
.
-
iPureIntro
.
exact
H3
.
-
iPureIntro
.
done
.
-
iExists
_.
iFrame
.
iPureIntro
.
split
.
+
intros
q
ws
HEq
.
destruct
(
decide
(
p
=
q
))
as
[
<-|
NEq
].
*
rewrite
lookup_insert
in
HEq
.
by
inversion
HEq
.
*
rewrite
lookup_insert_ne
in
HEq
;
last
done
.
pose
(
HHH
:=
H1
q
ws
HEq
).
rewrite
HHH
.
simpl
.
rewrite
decide_False
;
last
done
.
reflexivity
.
+
assert
(
p
∈
dom
(
gset
P
)
R
)
.
{
by
apply
:
elem_of_dom_2
.
}
rewrite
(
Hres
q
ws
HEq
)
.
simpl
.
rewrite
decide_False
;
done
.
+
assert
(
p
∈
dom
(
gset
P
)
R
)
by
exact
:
elem_of_dom_2
.
rewrite
dom_insert
.
set_solver
.
Qed
.
End
proph_map
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment