Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dan Frumin
iris-coq
Commits
4ac87063
Commit
4ac87063
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Reorganize algebra/gset a bit.
parent
f8e40d51
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/gset.v
+18
-16
18 additions, 16 deletions
algebra/gset.v
with
18 additions
and
16 deletions
algebra/gset.v
+
18
−
16
View file @
4ac87063
...
@@ -55,8 +55,6 @@ Section gset.
...
@@ -55,8 +55,6 @@ Section gset.
discreteUR
(
gset_disj
K
)
gset_disj_ra_mixin
gset_disj_ucmra_mixin
.
discreteUR
(
gset_disj
K
)
gset_disj_ra_mixin
gset_disj_ucmra_mixin
.
Arguments
op
_
_
_
_
:
simpl
never
.
Arguments
op
_
_
_
_
:
simpl
never
.
Section
fpu
.
Context
`
{
Fresh
K
(
gset
K
),
!
FreshSpec
K
(
gset
K
)
}
.
Lemma
gset_alloc_updateP_strong
P
(
Q
:
gset_disj
K
→
Prop
)
X
:
Lemma
gset_alloc_updateP_strong
P
(
Q
:
gset_disj
K
→
Prop
)
X
:
(
∀
Y
,
X
⊆
Y
→
∃
j
,
j
∉
Y
∧
P
j
)
→
(
∀
Y
,
X
⊆
Y
→
∃
j
,
j
∉
Y
∧
P
j
)
→
...
@@ -69,18 +67,10 @@ Section gset.
...
@@ -69,18 +67,10 @@ Section gset.
-
apply
HQ
;
set_solver
by
eauto
.
-
apply
HQ
;
set_solver
by
eauto
.
-
apply
gset_disj_valid_op
.
set_solver
by
eauto
.
-
apply
gset_disj_valid_op
.
set_solver
by
eauto
.
Qed
.
Qed
.
Lemma
gset_alloc_updateP
(
Q
:
gset_disj
K
→
Prop
)
X
:
(
∀
i
,
i
∉
X
→
Q
(
GSet
(
{
[
i
]
}
∪
X
)))
→
GSet
X
~~>:
Q
.
Proof
.
intro
;
eapply
gset_alloc_updateP_strong
with
(
λ
_
,
True
);
eauto
.
intros
Y
?
;
exists
(
fresh
Y
);
eauto
using
is_fresh
.
Qed
.
Lemma
gset_alloc_updateP_strong
'
P
X
:
Lemma
gset_alloc_updateP_strong
'
P
X
:
(
∀
Y
,
X
⊆
Y
→
∃
j
,
j
∉
Y
∧
P
j
)
→
(
∀
Y
,
X
⊆
Y
→
∃
j
,
j
∉
Y
∧
P
j
)
→
GSet
X
~~>:
λ
Y
,
∃
i
,
Y
=
GSet
(
{
[
i
]
}
∪
X
)
∧
i
∉
X
∧
P
i
.
GSet
X
~~>:
λ
Y
,
∃
i
,
Y
=
GSet
(
{
[
i
]
}
∪
X
)
∧
i
∉
X
∧
P
i
.
Proof
.
eauto
using
gset_alloc_updateP_strong
.
Qed
.
Proof
.
eauto
using
gset_alloc_updateP_strong
.
Qed
.
Lemma
gset_alloc_updateP
'
X
:
GSet
X
~~>:
λ
Y
,
∃
i
,
Y
=
GSet
(
{
[
i
]
}
∪
X
)
∧
i
∉
X
.
Proof
.
eauto
using
gset_alloc_updateP
.
Qed
.
Lemma
gset_alloc_empty_updateP_strong
P
(
Q
:
gset_disj
K
→
Prop
)
:
Lemma
gset_alloc_empty_updateP_strong
P
(
Q
:
gset_disj
K
→
Prop
)
:
(
∀
Y
:
gset
K
,
∃
j
,
j
∉
Y
∧
P
j
)
→
(
∀
Y
:
gset
K
,
∃
j
,
j
∉
Y
∧
P
j
)
→
...
@@ -89,17 +79,29 @@ Section gset.
...
@@ -89,17 +79,29 @@ Section gset.
intros
.
apply
(
gset_alloc_updateP_strong
P
);
eauto
.
intros
.
apply
(
gset_alloc_updateP_strong
P
);
eauto
.
intros
i
;
rewrite
right_id_L
;
auto
.
intros
i
;
rewrite
right_id_L
;
auto
.
Qed
.
Qed
.
Lemma
gset_alloc_empty_updateP
(
Q
:
gset_disj
K
→
Prop
)
:
(
∀
i
,
Q
(
GSet
{
[
i
]
}
))
→
GSet
∅
~~>:
Q
.
Proof
.
intro
.
apply
gset_alloc_updateP
.
intros
i
;
rewrite
right_id_L
;
auto
.
Qed
.
Lemma
gset_alloc_empty_updateP_strong
'
P
:
Lemma
gset_alloc_empty_updateP_strong
'
P
:
(
∀
Y
:
gset
K
,
∃
j
,
j
∉
Y
∧
P
j
)
→
(
∀
Y
:
gset
K
,
∃
j
,
j
∉
Y
∧
P
j
)
→
GSet
∅
~~>:
λ
Y
,
∃
i
,
Y
=
GSet
{
[
i
]
}
∧
P
i
.
GSet
∅
~~>:
λ
Y
,
∃
i
,
Y
=
GSet
{
[
i
]
}
∧
P
i
.
Proof
.
eauto
using
gset_alloc_empty_updateP_strong
.
Qed
.
Proof
.
eauto
using
gset_alloc_empty_updateP_strong
.
Qed
.
Lemma
gset_alloc_empty_updateP
'
:
GSet
∅
~~>:
λ
Y
,
∃
i
,
Y
=
GSet
{
[
i
]
}
.
Proof
.
eauto
using
gset_alloc_empty_updateP
.
Qed
.
End
fpu
.
Section
fresh_updates
.
Context
`
{
Fresh
K
(
gset
K
),
!
FreshSpec
K
(
gset
K
)
}
.
Lemma
gset_alloc_updateP
(
Q
:
gset_disj
K
→
Prop
)
X
:
(
∀
i
,
i
∉
X
→
Q
(
GSet
(
{
[
i
]
}
∪
X
)))
→
GSet
X
~~>:
Q
.
Proof
.
intro
;
eapply
gset_alloc_updateP_strong
with
(
λ
_
,
True
);
eauto
.
intros
Y
?
;
exists
(
fresh
Y
);
eauto
using
is_fresh
.
Qed
.
Lemma
gset_alloc_updateP
'
X
:
GSet
X
~~>:
λ
Y
,
∃
i
,
Y
=
GSet
(
{
[
i
]
}
∪
X
)
∧
i
∉
X
.
Proof
.
eauto
using
gset_alloc_updateP
.
Qed
.
Lemma
gset_alloc_empty_updateP
(
Q
:
gset_disj
K
→
Prop
)
:
(
∀
i
,
Q
(
GSet
{
[
i
]
}
))
→
GSet
∅
~~>:
Q
.
Proof
.
intro
.
apply
gset_alloc_updateP
.
intros
i
;
rewrite
right_id_L
;
auto
.
Qed
.
Lemma
gset_alloc_empty_updateP
'
:
GSet
∅
~~>:
λ
Y
,
∃
i
,
Y
=
GSet
{
[
i
]
}
.
Proof
.
eauto
using
gset_alloc_empty_updateP
.
Qed
.
End
fresh_updates
.
Lemma
gset_alloc_local_update
X
i
Xf
:
Lemma
gset_alloc_local_update
X
i
Xf
:
i
∉
X
→
i
∉
Xf
→
GSet
X
~
l
~>
GSet
(
{
[
i
]
}
∪
X
)
@
Some
(
GSet
Xf
).
i
∉
X
→
i
∉
Xf
→
GSet
X
~
l
~>
GSet
(
{
[
i
]
}
∪
X
)
@
Some
(
GSet
Xf
).
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment